scholarly journals Industrial By-Products for the Rehabilitation of Coal Mining-Affected Areas -- a Novel Approach

Author(s):  
Arkadiusz Bauerek ◽  
Jean Diatta ◽  
Łukasz Pierzchała ◽  
Alicja Krzemień ◽  
Angelika Więckol-Ryk

The blends of coal combustion by-products (CCBs) with organic wastes (sewage sludge and spent mushroom compost) were investigated for elaboration of soil substitutes for land rehabilitation of coal mine affected areas. The study incudes four types four types of habitat with different water retention and fertility i.e.: dry and moderate fertility (A1-A3), mesic and low fertility (B1-B3), mesic and moderate fertility (C1-C3), humid and low fertility (D1-D3). Obtained results revealed that the amounts of macronutrients were sufficient for supporting plant growth i.e.: N (0.44-0.60 %), P (0.13-021 %), K (1.63-1.98 %), Mg (1.01-1.38 %), Ca (5.32-8.23 %), S (2.66-4.12 %), whereas the concentration of organic matter varied within the range 20.3-27.9 %. Phytotest using white mustard (Sinapis alba) seeds under laboratory conditions showed that the best results of sprouting i.e: 56 and 66 % were obtained for D2 and D3, respectively. The values of pH (8.16-8.78) and electrical conductivity (5.28-6.73 mS·cm-1) of tested soil substitutes were found to be the decisive factors limiting the germination process. The coefficients between the parameters of soil substitutes and the Sinapis alba sproutings have revealed negative correlation with electrical conductivity (r = -0.46). Additionally, tests with meadow vegetation gave promising opportunity for the use of soil substitutes in the process of land rehabilitation. The cover of the mesic and dry meadow vegetation reached 90%. The Principal Component Analysis (PCA) has outlined that pH, content of P and organic matter, are the most important factors that influence cover of meadow vegetation.

Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1567
Author(s):  
Haydee Peña ◽  
Heysa Mendoza ◽  
Fernando Diánez ◽  
Mila Santos

This work studies variables measured from the first phase of composting through the acquisition of the final product, with the goal of identifying those that are more strongly related to quality and are most useful for developing an index. The necessity to establish quality control procedures thus exists for the classification of raw materials in the same way as for the finished products. To accomplish this, three mixtures were prepared, with the goal of achieving a C/N ratio of 30 and a moisture content of 60%. The primary component of each mixture was: fruit processing waste (C1), sewage sludge from the food industry (C2), and the manufacturing waste of fried foods (C3). Temperatures were measured over 107 days, with the corresponding data fit to a logistical model where T °C ~ α / ((1 + exp (− (Time − β) / − γ))) + δ, with interaction compost * time being statistically significant (p < 0.001). This allowed for the temperatures, in keeping with health concerns, to be confirmed. Likewise, a linear regression analysis demonstrated the decomposition of organic matter at 0.82%/week. Statistically, the parameters, measured during the process, with the least variability were selected, which differed in the average contrasts: germination index (cucumber), electrical conductivity, and average moisture. A principal component analysis (PCA) and Spearman’s correlation analysis revealed the best Germination Index (GI) values for C1, due to lower electrical conductivity (EC) and bulk density (Bd) along with higher organic matter content (TOM). For its part, C2 induced a higher Relative emergence (RE) of the cucumber thanks to its higher content of total nitrogen (TN) and lower contribution of Cu, Zn and K. C3 showed a higher presence of salts, less favorable physical characteristics (>Bd and <TPS, total pore space) and higher content of Zn and Cu. Composting carried out with appropriate mixtures can offer high-quality products for use as fertiliser, in soil restoration, and as an alternative substrate to peat and virgin mountain soil.


2001 ◽  
Vol 50 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Chen-Yu Chang ◽  
Yung-Hsu Hsieh ◽  
Yu-Min Lin ◽  
Po-Yu Hu ◽  
Chin-Chuan Liu ◽  
...  

Author(s):  
Jeonghyun Kim ◽  
Yeseul Kim ◽  
Sung Eun Park ◽  
Tae-Hoon Kim ◽  
Bong-Guk Kim ◽  
...  

AbstractIn Jeju Island, multiple land-based aquafarms were fully operational along most coastal region. However, the effect of effluent on distribution and behaviours of dissolved organic matter (DOM) in the coastal water are still unknown. To decipher characteristics of organic pollution, we compared physicochemical parameters with spectral optical properties near the coastal aquafarms in Jeju Island. Absorption spectra were measured to calculate the absorption coefficient, spectral slope coefficient, and specific UV absorbance. Fluorescent DOM was analysed using fluorescence spectroscopy coupled with parallel factor analysis. Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were measured using high-temperature catalytic oxidation. The DOC concentration near the discharge outlet was twice higher than that in natural groundwater, and the TDN concentration exponentially increased close to the outlet. These distribution patterns indicate that aquafarms are a significant source of DOM. Herein, principal component analysis was applied to categorise the DOM origins. There were two distinct groups, namely, aquaculture activity for TDN with humic-like and high molecular weights DOM (PC1: 48.1%) and natural biological activity in the coastal water for DOC enrichment and protein-like DOM (PC2: 18.8%). We conclude that the aquafarms significantly discharge organic nitrogen pollutants and provoke in situ production of organic carbon. Furthermore, these findings indicate the potential of optical techniques for the efficient monitoring of anthropogenic organic pollutants from aquafarms worldwide.


2020 ◽  
Vol 55 (2) ◽  
pp. 184-197
Author(s):  
Saeideh Mirzaei ◽  
Beata Gorczyca

Abstract In this study, diffused aeration was applied to remove trihalomethane (THM) compounds from chlorinated, treated water containing high dissolved organic carbon (DOC) of 6.8 ± 1.2 mg/L. Increasing air-to-water volumetric ratio (rA/W) from 16 to 39 enhanced total THM (TTHM) removal from 60 to 70% at 20 °C and from 30 to 50% at 4 °C. Although bromodichloromethane has lower Henry's law constant than chloroform (CF), it was removed by a higher degree than CF in some aeration trials. Albeit obtaining high removals in aeration, TTHM reformed, and their concentration surpassed the Canadian guideline of 100 ppb in about 24 hours at 20 °C and 40 hours at 10 °C in all attempted air-to-water ratios. The water age in the system investigated in this study varied from 48 hours in midpoint chlorine boosting stations to 336 hours in the nearest endpoint. This study showed that THM removal by aeration is not a viable solution to control the concentration of these disinfection by-products in high-DOC treated water and in distribution systems where water age exceeds 24 hours; unless, it is going to be installed at the distribution endpoints.


2016 ◽  
Vol 30 (3) ◽  
pp. 349-357 ◽  
Author(s):  
Aura Pedrera-Parrilla ◽  
Eric C. Brevik ◽  
Juan V. Giráldez ◽  
Karl Vanderlinden

Abstract Understanding of soil spatial variability is needed to delimit areas for precision agriculture. Electromagnetic induction sensors which measure the soil apparent electrical conductivity reflect soil spatial variability. The objectives of this work were to see if a temporally stable component could be found in electrical conductivity, and to see if temporal stability information acquired from several electrical conductivity surveys could be used to better interpret the results of concurrent surveys of electrical conductivity and soil water content. The experimental work was performed in a commercial rainfed olive grove of 6.7 ha in the ‘La Manga’ catchment in SW Spain. Several soil surveys provided gravimetric soil water content and electrical conductivity data. Soil electrical conductivity values were used to spatially delimit three areas in the grove, based on the first principal component, which represented the time-stable dominant spatial electrical conductivity pattern and explained 86% of the total electrical conductivity variance. Significant differences in clay, stone and soil water contents were detected between the three areas. Relationships between electrical conductivity and soil water content were modelled with an exponential model. Parameters from the model showed a strong effect of the first principal component on the relationship between soil water content and electrical conductivity. Overall temporal stability of electrical conductivity reflects soil properties and manifests itself in spatial patterns of soil water content.


2011 ◽  
Vol 11 (5) ◽  
pp. 621-630 ◽  
Author(s):  
J. K. Wassink ◽  
R. C. Andrews ◽  
R. H. Peiris ◽  
R. L. Legge

Bench-scale tests were conducted to evaluate enhanced coagulation as a method for removing natural organic matter (NOM) from a surface water to reduce the formation of disinfection by-products (DBPs). Aluminium sulphate (alum) and two polyaluminium chloride (PACl) coagulants were used, as well as alum with pH depression. Using a PACl coagulant alone or alum with pH depression was shown to attain 35% removal of TOC at lower dosages (31 and 29 mg/L, respectively) when compared to the use of alum alone (43 mg/L). In addition to TOC and UV254, a fluorescence excitation–emission matrix (FEEM) approach and liquid chromatography–organic carbon detection (LC-OCD) were used to further characterize the removal of NOM in both untreated and filtered waters. Principal component analysis of FEEM was able to identify the presence of humic-like substances (HS), protein-like substances (PS), and colloidal/particulate matter (CPM); HS were found to have a close correlation with TOC and UV254. LC-OCD enabled the quantitative detection of hydrophobic and hydrophilic DOC; the latter was further separated into five components, the largest of which was HS. Strong linear correlations were calculated between TOC, UV254, HS, and hydrophilic DOC (r2 &gt; 0.96); these parameters were also found to be closely correlated with the formation of trihalomethanes (THMs, r2 &gt; 0.78) and haloacetic acids (HAAs, r2 &gt; 0.92). Linear correlations with THMs and HAAs indicated that FEEM and LC-OCD provide good measures of DBP precursors when compared with TOC and UV254.


2013 ◽  
Vol 316-317 ◽  
pp. 323-326
Author(s):  
Chao Jie Zhang ◽  
Si Bo Li ◽  
Qian Chen ◽  
Qi Zhou

Dissolved organic matter (DOM) may do harms to human beings. After disinfected by chlorine (amine), DOM can form disinfection by-products (DBPs) which can be mutagenic, teratogenic and carcinogenic. Characterization and source of trihalomethane precursors in the secondary effluent by sequencing batch reactors were investigated. CHCl3 was the primary DBPs. The results showed that the precursors of CHCl3 were mainly strongly hydrophobic DOM, while CHCl2Br and CHClBr2 were mainly formed from hydrophilic DOM. The effects of different powder media (activated carbon, zeolite) on removal of DOM were compared. The results showed that the dosing of powder media can promote the removal of DOM and the DBPs precursors.


Sign in / Sign up

Export Citation Format

Share Document