scholarly journals Impact strength of 3D-printed polycarbonate

2020 ◽  
Vol 33 (1) ◽  
pp. 105-117
Author(s):  
Vries de ◽  
Roy Engelen ◽  
Esther Janssen

A vertical wall printed by Fused Filament Fabrication consists of a ribbed surface profile, due to the layer wise deposition of molten plastic. The notches between the printed layers act as stress concentrators and decrease its resistance to impact. This article shows the relation between impact strength and layer height by experimental data and finite element simulations of the stress intensity factor and the plastic zone near the tip of the notch. The impact resistance increased from 6 to 32 kJ/m2, when the layer height was decreased from 1.8 to 0.2 mm. When notches were removed by sanding, the samples did not fail any more during impact testing, resembling the behavior of smooth molded test bars. Tensile strength values up to 61 MPa were measured independent of layer height. Birefringence measurements were done to determine the actual stress levels, which ranged from 2 to 5 MPa.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pradeep Kumar Mishra ◽  
Senthil Ponnusamy ◽  
Mohan Satyanarayana Reddy Nallamilli

Purpose The purpose of this paper is to analyse the effect of water absorption and heat treatment on the impact strength of three-dimensional (3D) printed Izod specimens. A low-cost post-processing technique is proposed to improve the impact strength of 3D printed parts substantially. Design/methodology/approach In the present work, the effect of water absorption and the heat-treatment on the impact resistance of 3D printed poly-lactic acid parts possessing different layer-height, build-orientation and raster-orientation was studied. Water absorption tests were conducted in distilled water and it was observed that the water- absorption in specimens follows the Fickian diffusion mechanism. A set of specimens was heat-treated at 120°C for 1 h using an induction furnace. Post water absorption and heat-treatment a significant increase in the impact resistance is noticed and especially a steep increase in impact resistance is observed in heat-treated specimens. Findings Experimental findings show that raster orientation played a major role in the impact resistance of a 3D printed structure in comparison to other process parameters. The order of influence of process parameters on the impact strength of specimens was disclosed by the mean effect plots. In terms of processing time and cost, the post-processing heat-treatment approach was found to be convenient compared to the water absorption technique. Originality/value This paper presents a new set of low-cost post-processing techniques (water-absorption and heat-treatment) for improving the impact strength of 3D printed specimens.


2012 ◽  
Vol 445 ◽  
pp. 959-964
Author(s):  
Z. Khan ◽  
Necar Merah ◽  
A. Bazoune ◽  
S. Furquan

Low velocity drop weight impact testing of CPVC pipes was conducted on 160 mm long pipe sections obtained from 4-inch (100 mm) diameter schedule 80 pipes. Impact test were carried out for the base (as received) pipes and after their exposure to out door natural weathering conditions in Dhahran, Saudi Arabia. The results of the impact testing on the natural (outdoor exposure) broadly suggest that the natural outdoor exposures produce no change in the impact resistance of CPVC pipe material for the impact events carrying low incident energies of 10 and 20J. At the impact energies of 35 and 50J the natural outdoor exposures appear to cause appreciable degradation in the impact resistance of the CPVC pipe material. This degradation is noted only for the longer exposure periods of 12 and 18 months.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4066
Author(s):  
Marta Czajkowska ◽  
Ewa Walejewska ◽  
Łukasz Zadrożny ◽  
Monika Wieczorek ◽  
Wojciech Święszkowski ◽  
...  

This study was conducted to test possibilities of application of 3D printed dental models (DMs) in terms of their accuracy and physical properties. In this work, stone models of mandibles were cast from alginate impressions of 10 patients and scanned in order to obtain 3D printed acrylic replicas. The diagnostic value was tested as matching of model scans on three levels: peak of cusps, occlusal surface, and all teeth surfaces. The mechanical properties of acrylic and stone samples, specifically the impact strength, shore D hardness, and flexural and compressive strength were investigated according to ISO standards. The matching of models’ surfaces was the highest on the level of peaks of cusps (average lack of deviations, 0.21 mm) and the lowest on the level of all teeth surfaces (average lack of deviations, 0.64 mm). Acrylic samples subjected to mechanical testing, as expected, showed higher mechanical properties as compared to the specimens made of dental stone. In the present study we demonstrated that 3D printed acrylic models could be ideal representatives in the case of use as a diagnostic tool and as a part of medical records. The acrylic samples exhibited not only higher mechanical properties, but also showed better accuracy comparing to dental stone.


Designs ◽  
2019 ◽  
Vol 3 (4) ◽  
pp. 50 ◽  
Author(s):  
Athanasios Goulas ◽  
Shiyu Zhang ◽  
Darren A. Cadman ◽  
Jan Järveläinen ◽  
Ville Mylläri ◽  
...  

Fused filament fabrication (FFF) is a well-known and greatly accessible additive manufacturing technology, that has found great use in the prototyping and manufacture of radiofrequency componentry, by using a range of composite thermoplastic materials that possess superior properties, when compared to standard materials for 3D printing. However, due to their nature and synthesis, they are often a great challenge to print successfully which in turn affects their microwave properties. Hence, determining the optimum printing strategy and settings is important to advance this area. The manufacturing study presented in this paper shows the impact of the main process parameters: printing speed, hatch spacing, layer height and material infill, during 3D printing on the relative permittivity (εr), and loss tangent (tanδ) of the resultant additively manufactured test samples. A combination of process parameters arising from this study, allowed successful 3D printing of test samples, that marked a relative permittivity of 9.06 ± 0.09 and dielectric loss of 0.032 ± 0.003.


2015 ◽  
Vol 1105 ◽  
pp. 62-66 ◽  
Author(s):  
Saud Aldajah ◽  
Yousef Haik ◽  
Kamal Moustafa ◽  
Ammar Alomari

Nanocomposites attracted the attention of scientists due to their superior mechanical, thermal, chemical and electrical properties. This research studied the impact of adding carbon nanotubes (CNTs) to the woven Kevlar laminated composites on the high and low speed impact characteristics. Different percentages of CNTs were added to the woven Kevlar-Vinylester composite materials. An in-house developed drop weight testing apparatus was utilized for the low speed impact testing. Two different concentrations of the CNTs were added to a 15-layer woven Kevlar laminates, 0.32 wt% and 0.8 wt%. The results showed that: The 0.32 wt % CNT sample enhanced the interlaminar strength of the composite without enhancing the energy absorption capacity whereas, the 0.8 wt % CNT sample did not improve the impact resistance of the Kevlar composite.For the high speed impact tests, a bulletproof vest was prepared using woven Kevlar, resin, and CNTs at 1.5 w% percentage. The ballistic shooting was carried out by a professional shooter using a 30 caliber and 9 mm bullets for the tests. The CNT bulletproof sample bounced back the 30 caliber copper alloy bullet with no penetration.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hangyu Park ◽  
Youngson Choe

Toughened epoxy has been widely used in industrial areas such as automotive and electronics. In this study, nanosized hyperbranched polymers (HBPs) as a flexibilizer are synthesized and embedded into epoxy resin to enhance the toughness and flexibility. Two different HBPs, hyperbranched poly(methylacrylate-diethanolamine) (poly(MA-DEA)) and poly(methylacrylate- ethanolamine) (poly(MA-EA)), were prepared and blended with both epoxy and polyetheramine, a curing agent. The molecular size of HBPs was estimated to be 6 ~ 14 nm in diameter. The molecular weight of HBPs ranges from 1500(1.5 K) to 7000(7.0 K) g/mol. In cured epoxy/HBP blends, no phase separations are occurred, indicating that HBPs possess sufficient miscibility with epoxy. The tensile toughness of the blends increased with changing the molecular weight of HBPs without sacrificing tensile strengths. The impact strength of the blends increases stiffly until the loading % of HBPs in the blends reaches 10 wt%. In addition, the experimental studies showed that impact resistance also increased with an increase in molecular weight of HBPs. The obtained impact resistance of the epoxy/HBP blends with 10 wt% was 270% more effective compared to that of cured neat epoxy.


2020 ◽  
Vol 27 ◽  
pp. 37-41
Author(s):  
Josef Daniel ◽  
Jan Grossman ◽  
Vilma Buršíková ◽  
Lukáš Zábranský ◽  
Pavel Souček ◽  
...  

Coated components used in industry are often exposed to repetitive dynamic impact load. The dynamic impact test is a suitable method for the study of thin protective coatings under such conditions. Aim of this paper is to describe the method of dynamic impact testing and the novel concepts of evaluation of the impact test results, such as the impact resistance and the impact deformation rate. All of the presented results were obtained by testing two W-B-C coatings with different C/W ratio. Different impact test results are discussed with respect to the coatings microstructure, the chemical and phase composition, and the mechanical properties. It is shown that coating adhesion to the HSS substrate played a crucial role in the coatings’ impact lifetime.


Author(s):  
Luca Landi ◽  
Eckart Uhlmann ◽  
Robert Hoerl ◽  
Simon Thom ◽  
Giuseppe Gigliotti ◽  
...  

Abstract Machine guards provide protection against ejection of parts during operation, such as chips or workpiece fragments. They are considered safe if the impact resistance is at least as high as the resulting projectile energy in the worst case of damage. To protect the machine operator, the impact resistance of machine guards is determined according to ISO standards. The bisection method can be used to determine the impact resistance through impact tests. However, this method is inaccurate for a small number of impact tests and does not provide an indication of uncertainties in the determination. Moreover, the result of testing is validated in different ways depending from the standard utilized for testing.Relevant uncertainties affecting impact testing and a new probabilistic approach for assessing the impact resistance using the Recht & Ipson equation are presented. With multiple impact tests at different initial velocities a Recht & Ipson best-fit curve and a confidence interval for a ballistic limit can be obtained, which is used to determine the impact resistance by defining a velocity reduction coefficient. This method can be applied to any machine guard made of ductile material. This paper validates the Recht & Ipson method by performing impact tests with a standardized 2.5 kg projectile on polycarbonate sheets of different thicknesses. Determination of the ballistic limit showed good agreement with experimental results. With the ballistic limits, the velocity reduction coefficients have been found to determine the impact resistances. Therefore, an alternative method for standardized tests to determine the impact resistance was found.


2017 ◽  
Vol 17 (01) ◽  
pp. 1750019
Author(s):  
MARYAM KALANTARI ◽  
ATA HASHEMI

Antibiotic-impregnated poly(methyl methacrylate) (PMMA) bone cement has been successfully used to treat infected joint arthroplasties and surgeons have advocated the use of antibiotic-treated bone cement to prevent possible infections in joint replacement surgeries. However, there is a concern that this addition may adversely affect the mechanical properties of the bone cement. In most cases, the addition of antibiotics to bone cement has been reported to lower its mechanical strength. The uniaxial, biaxial and three/four point bending tests of antibiotic-impregnated bone cement have been extensively performed and well documented. However, only a few documents have focused on the impact strength of bone cement. The present study reports the impact tests of control and antibiotic loaded bone cements at different temperatures and aging conditions. According to the results, the addition of gentamicin or vancomycin significantly reduced the samples' impact strength. Moreover, the samples aged in saline at 23[Formula: see text]C were more resistant than the samples aged in air at 23[Formula: see text]C. Furthermore, raising the storage temperature from 23[Formula: see text]C to 37[Formula: see text]C significantly lowered the bone cement's impact strength in both control and antibiotic loaded samples.


Sign in / Sign up

Export Citation Format

Share Document