scholarly journals Some properties of LVL composed of poplar and beech veneer and possibilities of their application for window frames

2017 ◽  
pp. 167-184
Author(s):  
Vladislav Zdravkovic ◽  
Aleksandar Lovric ◽  
Igor Dzincic ◽  
Nemanja Pantovic

The subject of this paper was a research of physical and mechanical properties of LVL composed of peeled poplar veneers in core layers and only outer layers of beech peeled veneers, so as the examination of window frame glue joint strength produced of this material. LVL boards have been hot pressed in industrial conditions, using appropriate phenol formaldehyde (PP) adhesive. Samples for corner window frame glue joint strength testing were glued with PVAc D4 class adhesive. Statistical analysis showed that there were significant differences both in moisture content and density of LVL boards regarding their thickness, while in the case of hardness this difference did not exist. Examinations of LVL glue line shear strength showed that both phenol formaldehyde (PP) and PVAc D4 class adhesives fulfilled standard requirements. The results of corner window frame double tenon glue joint strength produced from combined poplar-beech veneer LVL indicated that such material could be used to produce window frame corner joint, strong enough to withstand the additional load, without an increase of the cross section.

Alloy Digest ◽  
2008 ◽  
Vol 57 (3) ◽  

Abstract Ansonia alloy C14500 has unique fabrication properties while maintaining both physical and mechanical properties close to pure copper. The addition of Tellurium makes the alloy free machining. This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength. It also includes information on forming, heat treating, machining, and joining. Filing Code: CU-752. Producer or source: Ansonia Copper & Brass Inc.


Alloy Digest ◽  
1999 ◽  
Vol 48 (10) ◽  

Abstract Kaiser Aluminum alloy KA62 (Tennalum alloy KA62) is a lead-free alternative to 6262. It offers good machinability and corrosion resistance and displays good acceptance of coatings (anodize response). It can be used in place of 6262 because its physical and mechanical properties are equivalent to those of 6262 (see Alloy Digest Al-361, September 1999). This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength. It also includes information on corrosion resistance as well as forming, heat treating, machining, and surface treatment. Filing Code: AL-362. Producer or source: Tennalum, A Division of Kaiser Aluminum.


2021 ◽  
Author(s):  
Rong Gui ◽  
Guicheng He

Abstract In this paper, the hydraulic sedimentary model was established to investigate the effects of dry beach slope on the sedimentary characteristics of tailings, and the sand column model was built to investigate the effects of seepage erosion on the physical and mechanical properties of sedimentary tailings under unsteady seepage.The results show that the slope of dry beach have a great effect on the sedimentary characteristics of tailings, the average particle size of tailings decreases along the slope of dry beach, and the larger the slope, the more obvious the stratification of the tailings. The migration of fine-grained tailings caused by seepage erosion increases the permeability of the tailings and reduces the shear strength of the tailings. After seepage erosion,the average particle size of 1#tailings sample, 2#tailings sample and 3#tailings sample increased by 6.4%, 12.0% and 2.4% respectively, the hydraulic conductivity of 1# tailings sample, 2# tailings sample and 3# tailings increased by 27.2%,17.9%, and 15.3% respectively after internal erosion, and the shear strength of 1#tailings sample, 2#tailings sample and 3#tailings sample tailings sample decreased by 20.9 %, 15.1% and 12.4% respectively.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1166 ◽  
Author(s):  
Pavlo Bekhta ◽  
Ján Sedliačik

Thermoplastic films exhibit good potential to be used as adhesives for the production of veneer-based composites. This work presents the first effort to develop and evaluate composites based on alder veneers and high-density polyethylene (HDPE) film. The effects of hot-pressing temperature (140, 160, and 180 °C), hot-pressing pressure (0.8, 1.2, and 1.6 MPa), hot-pressing time (1, 2, 3, and 5 min), and type of adhesives on the physical and mechanical properties of alder plywood panels were investigated. The effects of these variables on the core-layer temperature during the hot pressing of multiplywood panels using various adhesives were also studied. Three types of adhesives were used: urea–formaldehyde (UF), phenol–formaldehyde (PF), and HDPE film. UF and PF adhesives were used for the comparison. The findings of this work indicate that formaldehyde-free HDPE film adhesive gave values of mechanical properties of alder plywood panels that are comparable to those obtained with traditional UF and PF adhesives, even though the adhesive dosage and pressing pressure were lower than when UF and PF adhesives were used. The obtained bonding strength values of HDPE-bonded alder plywood panels ranged from 0.74 to 2.38 MPa and met the European Standard EN 314-2 for Class 1 plywood. The optimum conditions for the bonding of HDPE plywood were 160 °C, 0.8 MPa, and 3 min.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 248
Author(s):  
Man Zhang

To meet the demand for efficient and reliable copper and aluminum (Cu/Al) joints in refrigeration and electric power industries, interfacial reactions in 3003 Al/T2 Cu and 1035 Al/T2 Cu joints brazed by Zn-xAl (x ranged from 2–25 wt.%) filler metals and their effects on the mechanical properties of the joints were investigated. Microstructures and fracture surfaces were observed combining with composition analysis. For 3003 Al/Cu joints, bulk CuAl and CuAl2 intermetallic compound (IMC) formed in brazing seams, and a CuAl IMC layer formed at the Cu side interfaces. For 1035 Al/Cu joints, bulk CuAl2 IMC formed in brazing seams, and an Al4.2Cu3.2Zn0.7 IMC layer formed at the Cu side interfaces. For both kinds of joints, shear strength increased first, then decreased with the increasing Al content. The increase in shear strength was because Al promoted the formation of Cu-Al IMC, and caused dispersion strengthening. With the excessive Al content, however, the bulk IMC became coarse and the IMC layers at Cu side interfaces grew thick, causing the joint strength to decrease due to stress concentration. The strength of 3003 Al/Cu joints was always higher than that of 1035 Al/Cu, and their highest strength were achieved by Zn-12Al and Zn-15Al, respectively.


2011 ◽  
Vol 250-253 ◽  
pp. 788-794
Author(s):  
Shu Lin Zhan ◽  
Shu Sen Gao ◽  
Jun Ying Lai

In order to study the influence of modified polypropylene (PP) fiber on the physical and mechanical properties of curing sludge, the same amount of cement and different content of polypropylene fiber were mixed into the sludge. Unconfined compressive strength tests, water content tests and shear strength tests were carried out on different specimens with different curing time. The results show that the sludge curing effect is markedly improved by the addition of the polypropylene fiber. As to the curing sludge with the same curing time, when the content of the polypropylene fiber increases, the unconfined compressive strength and the cohesive strength greatly increase, and the internal frictional angle decreases.


2014 ◽  
Vol 881-883 ◽  
pp. 1726-1731
Author(s):  
Ying Hua Zhang ◽  
Bo Chuan Zhao ◽  
Zhou Jing Ye ◽  
Zhi An Huang ◽  
Ming Shan Gong

Physical and mechanical properties of rocks are the fundamental factors affecting the slope stability, the rock physical and mechanical properties of the Luming molybdenum mine were tested and analyzed in the laboratory. The results can provide us the basic data and reference to do numerical simulation and physical simulation of slope stability. The experimental results showed that: the greater the depth of rock of Luming molybdenum mine, the greater the density becomes,so as the freeze-thaw coefficient; the rock strength complies with the general rule; uniaxial tensile strength of dried rocks is much larger than water-saturated rocks; various rocks compressive strength σ3 rose up with σ1 rising; the shear strength of the rocks containing weak structure surface is far less than the shear strength of the intact rocks.


Holzforschung ◽  
2012 ◽  
Vol 66 (1) ◽  
Author(s):  
Amir Sahaf ◽  
Karl Englund ◽  
Marie-Pierre G. Laborie

Abstract The development of adhesives that have good initial adhesion (tack) that provides improved mat integrity during shape-forming of wood composites has been the subject of recent research. Hybrid adhesives were made based on thermosetting phenol-formaldehyde (PF), to which three tacky adhesives were added: high tack fish glue (FG), dextrin glue (DX) and a commercial acrylic, pressure-sensitive adhesive (PSA). Tacky adhesives were blended with PF at weight levels of 25%, 50% and 75%. The time-dependent tack development of the resulting hybrid adhesives was evaluated by means of a texture analyzer. The bond strength of adhesives was measured after curing by shear block test. PF/DX blends exhibited the highest tack during longer open times, while blends of PF and FG had low tack during shorter times. PF/PSA blends lost their bond strength completely after being heated at the curing temperature of PF. PF/FG blends did not show a significant decrease in bond strength compared to pure PF. The addition of DX had no effect on shear strength at ratios <75%.


FLORESTA ◽  
2021 ◽  
Vol 51 (2) ◽  
pp. 419
Author(s):  
Giuliano Ferreira Pereira ◽  
Setsuo Iwakiri ◽  
Rosilani Trianoski ◽  
Polliana D'angelo Rios ◽  
Renan Zunta Raia

The objective of this research was to evaluate the effects of thermal modifications, at different temperatures and exposure times, on the technological properties of mixed particleboard / OSB panels made out of Eucalyptus badjensis. Using the wood of Eucalyptus badjensis, Particleboard, OSB and mixed Particleboard/OSB panels (control and thermally modified) were manufactured. The mixed panels’ thermal modification was carried out under three temperatures (180ºC, 200ºC and 220ºC) and two exposure times (10 minutes and 12 minutes). For the panels’ manufacturing, 6% of phenol-formaldehyde adhesive and 1% of paraffin were employed, which was calculated based on the particles’ dry mass. The water absorption and thickness swelling properties were evaluated after 2 and 24 hours of immersion, in addition to the panels’ modulus of elasticity, modulus of rupture and internal bond. Based on the results, we were able to conclude that the thermal modification affected most of the physical properties positively. From the different exposure times studied, the most effective one was the period of 12 minutes, especially for water absorption after 2 hours, which caused a reduction of 11.27%. In turn, the most effective temperature was of 220ºC, highlighting the thickness swelling after 24 hours, which caused a swelling decrease of 23.76% in comparison with the control panels. Regarding the mechanical properties, the thermal modification, in terms of the studied exposure times and temperatures, did not affect the results of the mixed particleboard /OSB panels. 


Sign in / Sign up

Export Citation Format

Share Document