scholarly journals Application of plasma technology for the modification of polymer and textile materials

2004 ◽  
Vol 58 (2) ◽  
pp. 55-63
Author(s):  
Maja Radetic ◽  
Zoran Petrovic

Plasma treatment is based on the physico-chemical changes of the material surface and as an ecologically and economically acceptable process it can be an attractive alternative to conventional modifications. The possibilities of plasma technology application to the modification of polymer and textile materials are discussed. Different specific properties of the material can be achieved by plasma cleaning, etching, functionalization or polymerization. The final effects are strongly influenced by the treatment parameters (treatment time, pressure, power, gas flow), the applied gas and nature of the material. The plasma treatment of polymers is predominantly focused on cleaning and activation of the surfaces to increase adhesion, binding, wettability, dye ability and printability. Current studies deal more with plasma polymerization where an ultra thin film of plasma polymer is deposited on the material surface and, depending on the applied monomer, different specific properties can be obtained (i.e. chemical and thermal resistance, abrasion resistance, antireflexion, water repellence, etc.). Plasma application to textiles is mostly oriented toward wool and synthetic fibres, though some studies also consider cotton, hemp, flax and silk. The main goal of plasma treatment is to impart a more hydrophilic fibre surface and accordingly increase wettability, dye ability, printability and particularly, shrink resistance in the case of wool. Recent studies have favored technical textiles, where plasma polymerization can offer a wide range of opportunities.

2021 ◽  
Vol 69 (2) ◽  
pp. 21-29
Author(s):  
Silvana Zhezhova ◽  
Sonja Jordeva ◽  
Sashka Golomeova-Longurova ◽  
Stojanche Jovanov

Medical textile is an extremely important subcategory of technical textile because it is covering a wide range of products. The term medical textile itself covers all types of textile materials that are used in the healthcare system for various purposes. Medical textile is also known as health textile and is one of the fastest growing sectors in the technical textile market. The growth rate of technical textiles in this area is due to constant improvements and innovations in both areas: textile technologies and medical procedures. Textile structures used in this field include yarns, woven, knitted and non-woven textile materials as well as composite materials reinforced with textiles. The number of applications is large and diverse, from simple surgical sutures to complex composite structures for bone and tissue replacement, hygiene materials, protective products used in operating rooms and in the process of postoperative wound treatment. The purpose of this paper is to emphasize the importance of technical textiles for medical, surgical and healtcare applications, to indicate which textiles are currently used in this field.


2018 ◽  
Vol 49 (4) ◽  
pp. 534-547 ◽  
Author(s):  
Yuanping Jiang ◽  
Jiaxun Li ◽  
Fangming Liu ◽  
Zongcai Zhang ◽  
Zhengjun Li ◽  
...  

Low temperature plasma technology has the characteristics of economy, pollution-free and high efficiency. The pioneering works were carried out by applying low temperature plasma to surface modification of natural leather and chrome tanning process, to reduce water pollution. The effects of oxygen low temperature plasma treatment on the micro-structure, chemical compositions and active groups of leather fiber were studied in this paper. The optimal low temperature plasma treatment time was 10 min, which had the maximal chrome exhausting value. The SEM results showed that the leather surface was etched rougher with time increasing. The contact angle measurements showed that the hydrophilic property of leather surface increased after low temperature plasma process. The XPS data showed that the O1s area ratios increased from 19.49% to 26.45%, the content of COOH roughly tripled after O2 low temperature plasma treatment for 10 min, and the surface chrome content increased from 1.09% to 1.31% after chrome tanning. Based on the above results, low temperature plasma technology may provide a new exploring method for high-exhaustion chrome tanning technology.


2021 ◽  
pp. 088532822110518
Author(s):  
Qing Zhu ◽  
Ping Ye ◽  
Fang Guo ◽  
Yimen Zhu ◽  
Wenbin Nan ◽  
...  

In this study, the surface of the covered stent was treated by plasma technology to introduce amino functional groups, and glutaraldehyde and heparin were successfully grafted to prepare a heparin-functionalized covered stent (HPLCS). The preparation parameters such as plasma treatment power, plasma treatment time, concentration of glutaraldehyde and heparin, and pH of heparin solution were studied in detail. The functionalized heparin covered stent can make the titer of heparin reach 1.23 ± 0.03 IU/cm2. In animal experiments, after implantation in pigs for 6 months, the titer of heparin can still reach 0.93 ± 0.05 IU/cm2. This work provides a good method for preparing heparin covered stent.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1321
Author(s):  
Cheng-Yun Peng ◽  
Chia-Hung Dylan Tsai

Droplet manipulation is important in the fields of engineering, biology, chemistry, and medicine. Many techniques, such as electrowetting and magnetic actuation, have been developed for droplet manipulation. However, the fabrication of the manipulation platform often takes a long time and requires well-trained skills. Here we proposed a novel method that can directly generate and manipulate droplets on a polymeric surface using a universal plasma jet. One of its greatest advantages is that the jet can tremendously reduce the time for the platform fabrication while it can still perform stable droplet manipulation with controllable droplet size and motion. There are two steps for the proposed method. First, the universal plasma jet is set in plasma mode for modifying the manipulation path for droplets. Second, the jet is switched to air-jet mode for droplet generation and manipulation. The jetted air separates and pushes droplets along the plasma-treated path for droplet generation and manipulation. According to the experimental results, the size of the droplet can be controlled by the treatment time in the first step, i.e., a shorter treatment time of plasma results in a smaller size of the droplet, and vice versa. The largest and the smallest sizes of the generated droplets in the results are about 6 µL and 0.1 µL, respectively. Infrared spectra of absorption on the PDMS surfaces with and without the plasma treatment are investigated by Fourier-transform infrared spectroscopy. Tests of generating and mixing two droplets on a PDMS surface are successfully achieved. The aging effect of plasma treatment for the proposed method is also discussed. The proposed method provides a simple, fast, and low-cost way to generate and manipulate droplets on a polymeric surface. The method is expected to be applied to droplet-based cell culture by manipulating droplets encapsulating living cells and towards wall-less scaffolds on a polymeric surface.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1300-1305
Author(s):  
KI-HO SONG ◽  
HYUN-YONG LEE ◽  
HOE-YOUNG YANG ◽  
SUNG-WON KIM ◽  
JAE-HEE SEO ◽  
...  

Two-dimensional photonic crystals (2D-PCs) with Ge 2 Sb 2 Te 5 ( GST ) nanohole arrays were prepared by the nanosphere lithography (NSL) process. A primary factor of PCs is that the refractive index (n) and the n-modulation can be realized by using the GST films, which exhibit a reversible phase transformation between amorphous and crystalline states by laser illumination. The polystyrene (PS) spheres with a diameter of 500 nm were spin-coated on Si substrate and subsequently reduced by O 2-plasma treatment. The reduced spheres were utilized as a lift-off mask of the NSL process and their size and separation could be precisely controlled. Amorphous GST films were thermally evaporated and then the reduced PS spheres were removed. The fabricated GST nanohole arrays were observed by SEM and AFM. The nanohole diameters are nearly linearly reduced with increasing plasma-treatment time (t). The reduction rate (δ) for the conditions of this work was evaluated to be ~ 0.92 nm/s. The period (Λ) and filling factor (η) of PCs are structure parameters that determine their photonic bandgaps (PBGs). η-modulation can be easily achieved via a control of t and the Λ can be also modulated by the use of PS spheres with specific diameter. In addition, the PBGs for the fabricated GST 2 D PC were calculated by considering the amorphous and crystalline states of GST .


2017 ◽  
Vol 47 (8) ◽  
pp. 2029-2049 ◽  
Author(s):  
Siddhan Periyasamy ◽  
Krishna Prasad G ◽  
Raja ASM ◽  
Prashant G Patil

The present study aims to produce submicron surface roughening of aliphatic polyamide 6,6 (nylon 6,6) fabric using dielectric barrier discharge-based atmospheric low temperature plasma for improving the adhesion bonding with rubber. The plasma treatment was done in the time ranging from 15 s to 300 s. Formation of surface roughness on the fabric due to plasma treatment and the associated chemical changes were studied through high-resolution scanning electron microscope, geometrical surface roughness by Kawabata evaluation system surface tester, contact angle measurements and Fourier transform infrared in Attenuated total reflectance mode. Scanning electron microscope micrographs revealed the presence of submicron roughness on the nylon 6,6 fibre surface with pores of around 100 nm (0.1 µm) for the optimum treatment time of 180 s above which the pore merging effect dominated resulting in the net low surface roughness. Geometrical roughness (SMD) results were also well in agreement with the scanning electron microscope results for the roughening and the optimum effect of the plasma treatment. The control and plasma treated nylon 6,6 samples were used as reinforcements for rubber composite. The peel strength of the rubber composite, which is a measure of interfacial bonding, increased to 150% as the maximum for the optimum plasma treatment time of 180 s. Intense rubber deposits over the 180 s plasma treated samples were observed while only a few deposits of rubber were observed on the control fabric when their interfaces were examined through scanning electron microscope after peeling test.


2012 ◽  
Vol 499 ◽  
pp. 90-94 ◽  
Author(s):  
Jin Yun Xu ◽  
Wen Yu Wang ◽  
Xin Jin

To improve the adhesion between ultra-high-molecular-weight polyethylene (UHMWPE) fibers and matrix, the UHMWPE fibers were treated by low temperature argon-plasma. The effects of argon-plasma treatment on the properties of UHMWPE have been investigated. The roughness and wetting ability were all found to increase significantly after modifications. The tensile strength of UHMWE fibers were decreased with the plasma treatment time. The optimum plasma treatment is 2min.The increasing of roughness and wetting ability of UHMWPE fiber are beneficial to the improvement the adhesion between UHMWPE fiber and matrix.


Langmuir ◽  
2014 ◽  
Vol 30 (5) ◽  
pp. 1444-1454 ◽  
Author(s):  
Behnam Akhavan ◽  
Karyn Jarvis ◽  
Peter Majewski

Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 580
Author(s):  
Chao-Ching Chiang ◽  
Philip Nathaniel Immanuel ◽  
Yi-Hsiung Chiu ◽  
Song-Jeng Huang

In this work we report on a rapid, easy-to-operate, lossless, room temperature heterogeneous H2O plasma treatment process for the bonding of poly(methyl methacrylate) (PMMA) and double-sided polished (DSP) silicon substrates by for utilization in sandwich structured microfluidic devices. The heterogeneous bonding of the sandwich structure produced by the H2O plasma is analyzed, and the effect of heterogeneous bonding of free radicals and high charge electrons (e−) in the formed plasma which causes a passivation phenomenon during the bonding process investigated. The PMMA and silicon surface treatments were performed at a constant radio frequency (RF) power and H2O flow rate. Changing plasma treatment time and powers for both processes were investigated during the experiments. The gas flow rate was controlled to cause ionization of plasma and the dissociation of water vapor from hydrogen (H) atoms and hydroxyl (OH) bonds, as confirmed by optical emission spectroscopy (OES). The OES results show the relative intensity peaks emitted by the OH radicals, H and oxygen (O). The free energy is proportional to the plasma treatment power and gas flow rate with H bonds forming between the adsorbed H2O and OH groups. The gas density generated saturated bonds at the interface, and the discharge energy that strengthened the OH-e− bonds. This method provides an ideal heterogeneous bonding technique which can be used to manufacture new types of microfluidic devices.


Sign in / Sign up

Export Citation Format

Share Document