scholarly journals Pipe size sensitivity in pressure relief networks using genetic algorithms

2020 ◽  
pp. 32-32
Author(s):  
Sabla Alnouri ◽  
Mirjana Kijevcanin ◽  
Mirko Stijepovic

This paper utilizes a stochastic optimization approach using genetic algorithms, for conducting rigorous pipe size sensitivity assessments onto the design of pressure relief networks. By sampling high performance candidates, only the finest options can survive. The pressure relief network system that was investigated in this work was previously reported in literature. The problem is constrained and involves minimizing a cost objective function that evaluates the overall network performance, in which the best pipe size combination should be selected for each segment within the network. The overall goal of this paper was to seek cost-effective designs for the pressure relief piping system by exploring different ranges of pipe diameters that are available for each segment in the network and comparing how the overall design of the system is affected, when the number of pipe size options to select from is varied.

Author(s):  
Gunnar Lagerstro¨m ◽  
Max Xie

Rekuperator Svenska AB owned by VOLVO Technology Transfer Corporation and Avesta Polarit, has successfully developed a completely laser welded recuperator for micro-gas turbine applications. Tests have shown that the thermal performance is very competitive. The recuperator was installed in a 100 kW(e) micro-gas turbine power plant for combined electricity and heat generation by a customer. The recuperator is a primary surface counter flow heat exchanger with cross corrugated duct configuration. The primary heat transfer surface plate patterns are stamped and a pair of the plates are laser welded to form an air cell. The air cells are then stacked and laser welded together to form the recuperator core which is tied between two end beams. Manifolds for air inlet and outlet as well as piping system are welded to the core. Through varying the number of air cells the recuperator core can easily be adapted for micro-gas turbine applications with different output rates of electrical power. The key manufacturing technologies are stamping of the air cell plates and laser welding of the air cells. These processes can be fully automated for mass production at low costs.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Pyeongchan Ihm ◽  
Moncef Krarti

Optimal and cost-effective energy efficiency design and operation options are evaluated for office buildings in Tunisia. In the analysis, several design and operation features are considered including orientation, window location and size, high performance glazing types, wall and roof insulation levels, energy efficient lighting systems, daylighting controls, temperature settings, and energy efficient heating and cooling systems. First, the results of the optimization results from a sequential search technique are compared against those obtained by a more time consuming brute-force optimization approach. Then, the optimal design features for a prototypical office building are determined for selected locations in Tunisia. The optimization results indicate that utilizing daylighting controls, energy efficient lighting fixtures, and low-e double glazing, and roof insulation are required energy efficiency measures to design high energy performance office buildings throughout climatic zones in Tunisia. In particular, it is found that implementing these measures can cost-effectively reduce the annual energy use by 50% compared to the current design practices of office buildings in Tunisia.


Author(s):  
Shesh R. Koirala ◽  
Ilker T. Telci

Operation of fast closing valves in piping systems can create an overpressure condition, resulting in permanent deformation, joint damage, leakage, or rupture. Fast closing valves are used in many piping systems to protect personnel, equipment and the environment from the danger of overpressure. When there is a sudden closure of a piping system valve, the change in the flow velocity produces a transient increase in pipe pressure. This increased pressure is commonly known as transient, fluid hammer waterhammer, or surge pressure. In a very simplistic system, the excess pressure created by this sudden closure of valves can be computed using a simple hand calculation using Joukowsky method. The method is applicable only for the initial pressure wave generated. In complex systems, where there are dead legs (e.g. closed by-pass valves) or branches, there is more chance of the pressure waves being reflected, transmitted and superimposed. The overpressure problem is even more severe if a liquid column separation and re-joining occurs during the transient conditions. The magnitude of the pressure in the system due to these effects may be higher than that estimated by Joukowsky method. Hence a transient analysis needs to be performed to estimate the overpressure in the system. In this case study, the transient conditions initiated due to closure of buckling pin valves (BPVs) are modeled using a proprietary software CE099. The objectives are to calculate the maximum surge pressures, dynamic loads, and to recommend mitigations to reduce transient pressures and loads. The results showed that pressures could be reduced by increasing the pipe size of few segments or adding expansion loops. The most sensitive parameter for transient pressure was pipe size and that for dynamic load was valve closure time. It is recommended that this kind of study be performed in the early phase of engineering design, so that any identified overpressures can be mitigated with simple, cost effective options such as increasing pipe size, altering valve closure times, and adding expansion loops.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (09) ◽  
pp. 507-515 ◽  
Author(s):  
David Skuse ◽  
Mark Windebank ◽  
Tafadzwa Motsi ◽  
Guillaume Tellier

When pulp and minerals are co-processed in aqueous suspension, the mineral acts as a grinding aid, facilitating the cost-effective production of fibrils. Furthermore, this processing allows the utilization of robust industrial milling equipment. There are 40000 dry metric tons of mineral/microfbrillated (MFC) cellulose composite production capacity in operation across three continents. These mineral/MFC products have been cleared by the FDA for use as a dry and wet strength agent in coated and uncoated food contact paper and paperboard applications. We have previously reported that use of these mineral/MFC composite materials in fiber-based applications allows generally improved wet and dry mechanical properties with concomitant opportunities for cost savings, property improvements, or grade developments and that the materials can be prepared using a range of fibers and minerals. Here, we: (1) report the development of new products that offer improved performance, (2) compare the performance of these new materials with that of a range of other nanocellulosic material types, (3) illustrate the performance of these new materials in reinforcement (paper and board) and viscosification applications, and (4) discuss product form requirements for different applications.


2011 ◽  
Vol 39 (3) ◽  
pp. 193-209 ◽  
Author(s):  
H. Surendranath ◽  
M. Dunbar

Abstract Over the last few decades, finite element analysis has become an integral part of the overall tire design process. Engineers need to perform a number of different simulations to evaluate new designs and study the effect of proposed design changes. However, tires pose formidable simulation challenges due to the presence of highly nonlinear rubber compounds, embedded reinforcements, complex tread geometries, rolling contact, and large deformations. Accurate simulation requires careful consideration of these factors, resulting in the extensive turnaround time, often times prolonging the design cycle. Therefore, it is extremely critical to explore means to reduce the turnaround time while producing reliable results. Compute clusters have recently become a cost effective means to perform high performance computing (HPC). Distributed memory parallel solvers designed to take advantage of compute clusters have become increasingly popular. In this paper, we examine the use of HPC for various tire simulations and demonstrate how it can significantly reduce simulation turnaround time. Abaqus/Standard is used for routine tire simulations like footprint and steady state rolling. Abaqus/Explicit is used for transient rolling and hydroplaning simulations. The run times and scaling data corresponding to models of various sizes and complexity are presented.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie

Abstract This paper presents an overview of the general chemical principles underlying the structures, synthesis and technical performance of azo pigments, the dominant chemical class of industrial organic pigments in the yellow, orange, and red shade areas, both numerically and in terms of tonnage manufactured. A description of the most significant historical features in this group of pigments is provided, starting from the discovery of the chemistry on which azo colorants are based by Griess in the mid-nineteenth century, through the commercial introduction of the most important classical azo pigments in the early twentieth century, including products known as the Hansa Yellows, β-naphthol reds, including metal salt pigments, and the diarylide yellows and oranges, to the development in the 1950s and 1960s of two classes of azo pigments that exhibit high performance, disazo condensation pigments and benzimidazolone-based azo pigments. A feature that complicates the description of the chemical structures of azo pigments is that they exist in the solid state as the ketohydrazone rather than the hydroxyazo form, in which they have been traditionally been illustrated. Numerous structural studies conducted over the years on an extensive range of azo pigments have demonstrated this feature. In this text, they are referred to throughout as azo (hydrazone) pigments. Since a common synthetic procedure is used in the manufacture of virtually all azo (hydrazone) pigments, this is discussed in some detail, including practical aspects. The procedure brings together two organic components as the fundamental starting materials, a diazo component and a coupling component. An important reason for the dominance of azo (hydrazone) pigments is that they are highly cost-effective. The syntheses generally involve low cost, commodity organic starting materials and are carried out in water as the reaction solvent, which offers obvious economic and environmental advantages. The versatility of the approach means that an immense number of products may be prepared, so that they have been adapted structurally to meet the requirements of many applications. On an industrial scale, the processes are straightforward, making use of simple, multi-purpose chemical plant. Azo pigments may be produced in virtually quantitative yields and the processes are carried out at or below ambient temperatures, thus presenting low energy requirements. Finally, provided that careful control of the reaction conditions is maintained, azo pigments may be prepared directly by an aqueous precipitation process that can optimise physical form, with control of particle size distribution, crystalline structure, and surface character. The applications of azo pigments are outlined, with more detail reserved for subsequent papers on individual products.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Yassine Khlifi ◽  
Majid Alotaibi

AbstractOptical label switching is introduced for ensuring fast data transfer, quality of service (QoS) support, and better resource management. However, the important issue is how to optimize resource usage and satisfy traffic constraints for improving network performance and design. This paper proposes a dynamic approach that optimizes the resource in terms of link capacity and FDL (fiber delay line) buffering as well as a wavelength converter. The proposed approach decreases the resources usage and guarantees QoS support for various traffic demands. The optimization strategy consists of two stages: path building and traffic management. The path building assures logical topology making using the cumulative cost of available resource and traffic requirements including unicast and multicast. The traffic management solves the resource formulation problem during the traffic transfer by guaranteeing the required loss and blocking delay. Simulation work is conducted for validating the proposed approach and evaluating its performances and effectiveness. Simulation results show that our proposal minimizes effectively the use of link capacity of lightpath and light-tree. Moreover, our approach optimizes the use of buffering capacity and wavelength converter and guarantees QoS support according to traffic requirements.


2011 ◽  
Vol 1295 ◽  
Author(s):  
Marc Thomas

ABSTRACTOne of the main driving force for the development of advanced structural materials is weight saving especially in the transportation industry in order to reduce CO2 emission. The utilization of gamma aluminides, as good candidates for aerospace applications, is strongly related to the development of a cost-effective and robust processing route, as far as possible. It is well established that the processing route, i.e. cast, wrought or PM, has a dramatic effect on the microstructure and texture of gamma-TiAl alloys. Therefore, significant microstructural variations through post-heat treatments coupled with compositional modifications can only guarantee a proper balance of desired properties. However, a number of metallurgical factors during the processing steps can contribute to some scattering in properties. This review will highlight several critical process variables in terms of the resulting g-TiAl microstructures. Of primary importance is the as-cast texture which is difficult to control and may contribute to prefer some alternative processing routes to ensure a better repeatability in mechanical results. Some innovative processing techniques for controlling the structure will then be presented. The main point which will be discussed in this paper is whether an approach leading to a robust process would not be at the expense of the high performance of the structural material.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4545
Author(s):  
Sudharsan Sadhasivam ◽  
Omer Barda ◽  
Varda Zakin ◽  
Ram Reifen ◽  
Edward Sionov

Patulin (PAT) and citrinin (CTN) are the most common mycotoxins produced by Penicillium and Aspergillus species and are often associated with fruits and fruit by-products. Hence, simple and reliable methods for monitoring these toxins in foodstuffs are required for regular quality assessment. In this study, we aimed to establish a cost-effective method for detection and quantification of PAT and CTN in pome fruits, such as apples and pears, using high-performance liquid chromatography (HPLC) coupled with spectroscopic detectors without the need for any clean-up steps. The method showed good performance in the analysis of these mycotoxins in apple and pear fruit samples with recovery ranges of 55–97% for PAT and 84–101% for CTN, respectively. The limits of detection (LOD) of PAT and CTN in fruits were 0.006 µg/g and 0.001 µg/g, while their limits of quantification (LOQ) were 0.018 µg/g and 0.003 µg/g, respectively. The present findings indicate that the newly developed HPLC method provides rapid and accurate detection of PAT and CTN in fruits.


Sign in / Sign up

Export Citation Format

Share Document