scholarly journals Upgrading fuel potentials of waste biomass via hydrothermal carbonization

2021 ◽  
pp. 25-25
Author(s):  
Jelena Petrovic ◽  
Marija Simic ◽  
Marija Mihajlovic ◽  
Marija Koprivica ◽  
Marija Kojic ◽  
...  

In recent decades, massive exploitation of fossil fuels caused a growing demand for the production of energies from renewable sources. Hydrochar obtained from waste biomass via hydrothermal carbonization (HTC) possesses good potentials as a biofuel. Therefore, we performed HTC of corn cob, paulownia leaves, and olive pomace at different temperatures (180, 220, and 260 oC). The main goal of this study was to comparatively evaluate the influence of HTC conditions on the structure and fuel characteristics of the obtained solids. The results showed that the yields of hydrochar decrease significantly with increasing temperature in all samples. The carbon content and higher heating value increased and reached the highest values in hydrochars obtained at 260 oC, while the content of volatile matter decreased. Furthermore, the Van Krevelen diagram reveals that the transformation of feedstock to lignite-like products upon HTC was achieved. In this study, the results showed that processes of dehydration and decarboxylation during HTC provoke intensive biomass transformation and that hydrochars obtained at higher temperatures have significantly enhanced fuel properties and fewer volatiles compared to the feedstock.

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3226 ◽  
Author(s):  
Pablo Arauzo ◽  
Maciej Olszewski ◽  
Andrea Kruse

Hydrochar is a very interesting product from agricultural and food production residues. Unfortunately, severe conditions for complete conversion of lignocellulosic biomass is necessary, especially compared to the conversion of sugar compounds. The goal of this work is to improve the conversion of internal carbohydrates by application of a two-steps process, by acid addition and slightly higher water content. A set of experiments at different temperatures (180, 200, and 220 °C), reaction times (2 and 4 h), and moisture contents (80% and 90%) was performed to characterize the solid (high heating value (HHV), elemental) and liquid product phase. Afterwards, acid addition for a catalyzed hydrolysis reaction during hydrothermal carbonization (HTC) and a two-steps reaction (180 and 220 °C) were tested. As expected, a higher temperature leads to higher C content of the hydrochar and a higher fixed carbon (FC) content. The same effect was found with the addition of acids at lower temperatures. In the two-steps reaction, a primary hydrolysis step increases the conversion of internal carbohydrates. Higher water content has no significant effect, except for increasing the solubility of ash components.


2021 ◽  
Author(s):  
Mustafa Kaan Baltacıoğlu ◽  
Mustafa Tunahan Başar ◽  
Hüseyin Turan Arat ◽  
Yasin Erdoğan

Abstract This study focuses on determining the fuel properties of apple pulp, pomegranate seeds, pomegranate peel and orange peel wastes and converting them into pellet fuel. Within the scope of the study, the organic wastes were dried, ruined into small pieces and then pressed to take the pellet form. Moisture content, ash content, volatile matter determination, fixed carbon content, total sulfur content, hydrogen content, lower heating value and higher heating value were analyzed as solid fuel characterization process. Experiments were carried out in an internationally accredited laboratory in accordance with ASTM and TS EN ISO/IEC 17025 Standards. Considering the results, it was determined that the pellet obtained from fully dry state pomegranate seed had a calorific value of 4244 kcal/kg, whereas the commercial pellet was 4759 kcal/kg under the same conditions. On the other hand, the moisture contents of the commercial pellet and pomegranate seed sample were 5.42% and 1.83%, respectively. The drying process was one of the costliest stages of pellet production. The low moisture contents can reduce the production cost and shorten the time.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8229
Author(s):  
Sebastian Paczkowski ◽  
Victoria Knappe ◽  
Marta Paczkowska ◽  
Luis Alonzo Diaz Robles ◽  
Dirk Jaeger ◽  
...  

The worldwide transformation from fossil fuels to sustainable energy sources will increase the demand for biomass. However, the ash content of many available biomass sources exceeds the limits of national standards. In this study, short-rotation coppice willow biomass was hydrothermally treated at 150, 170 and 185 °C. The higher heating value increased by 2.6% from x¯ = 19,279 J × g−1 to x¯ = 19,793 J × g−1 at 185 °C treatment temperature. The mean ash content was reduced by 53% from x¯ = 1.97% to x¯ = 0.93% at 170 °C treatment temperature, which was below the limit for category TW1b of the European pellet standard for thermally treated biomass. The nitrogen, sulfur and cadmium concentrations were reduced below the limits for category TW1b of the European biomass pellet standard (N: from 0.52% to 0.34%, limit at 0.5%; S: from 0.051% to 0.024%, limit at 0.04%; Cd: from 0.83 mg × kg−1 to 0.37 mg × kg−1, limit at 0.5 mg × kg−1). The highest reduction rates were sampled for phosphor (80–84%), potassium (78–90%), chlorine (96–98%) and lithium (96–98%). The reduction behavior of the elements is discussed according to the chemical processes at the onset of hydrothermal carbonization. The results of this study show that HTT has the potential to expand the availability of biomass for the increasing worldwide demand in the future.


Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 516 ◽  
Author(s):  
Witold M. Lewandowski ◽  
Michał Ryms ◽  
Wojciech Kosakowski

In this paper, the most important methods of thermal conversion of biomass, such as: hydrothermal carbonization (180–250 °C), torrefaction (200–300 °C), slow pyrolysis (carbonization) (300–450 °C), fast pyrolysis (500–800 °C), gasification (800–1000 °C), supercritical steam gasification, high temperature steam gasification (>1000 °C) and combustion, were gathered, compared and ranked according to increasing temperature. A comprehensive model of thermal conversion as a function of temperature, pressure and heating rate of biomass has been provided. For the most important, basic process, which is pyrolysis, five mechanisms of thermal decomposition kinetics of its components (lignin, cellulose, hemicellulose) were presented. The most important apparatuses and implementing devices have been provided for all biomass conversion methods excluding combustion. The process of combustion, which is energy recycling, was omitted in this review of biomass thermal conversion methods for two reasons. Firstly, the range of knowledge on combustion is too extensive and there is not enough space in this study to fully discuss it. Secondly, the authors believe that combustion is not an environmentally-friendly method of waste biomass utilization, and, in the case of valuable biomass, it is downright harmful. Chemical compounds contained in biomass, such as biochar, oils and gases, should be recovered and reused instead of being simply burnt—this way, non-renewable fuel consumption can be reduced.


2019 ◽  
Vol 114 ◽  
pp. 07003
Author(s):  
Kristina Krysanova ◽  
Alla Krylova ◽  
Victor Zaichenko ◽  
Vladimir Lavrenov ◽  
Vladimir Khaskhachikh

Hydrothermal carbonization is modern low-temperature method to improve characteristics of peat and other types of biomass as a fuel. The influence of methods at different temperatures and different reaction time the physical-chemical and energy properties of the resulting biochar is studied. Characteristics of the initial peat and hydrochar were determined such as elemental composition, ash content, moisture content, heating values. It has been established that with an increase in temperature and reaction time, yield of hydrochar oxygen in it decreases (from 33.1% - initial peat to 19.47% - hydrochar obtained at 230 °C), but carbon (from 52.09% - initial peat to 68.17% - hydrochar obtained at 230 °C) and heating value increases. Also was observed leaching the inorganic component from hydrochar into the water.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2022 ◽  
Author(s):  
Bide Zhang ◽  
Mohammad Heidari ◽  
Bharat Regmi ◽  
Shakirudeen Salaudeen ◽  
Precious Arku ◽  
...  

Hydrothermal carbonization (HTC) is a useful method to convert wet biomass to value-added products. Fruit waste generated in juice industries is a huge source of moist feedstock for such conversion to produce hydrochar. This paper deals with four types of fruit wastes as feedstocks for HTC; namely, rotten apple (RA), apple chip pomace (ACP), apple juice pomace (AJP), and grape pomace (GP). The operating conditions for HTC processing were 190 °C, 225 °C, and 260 °C for 15 min. For all samples, higher heating value and fixed carbon increased, while volatile matter and oxygen content decreased after HTC. Except for ACP, the ash content of all samples increased after 225 °C. For RA, AJP, and GP, the possible explanation for increased ash content above 225 °C is that the hydrochar increases in porosity after 230 °C. It was observed that an increase in HTC temperature resulted in an increase in the mass yield for RA and GP, which is in contrast with increasing HTC temperature for lignocellulose biomass. Other characterization tests like thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) also showed that the HTC process can be successfully used to convert fruit wastes into valuable products.


2016 ◽  
Vol 12 (2) ◽  
pp. 4204-4212 ◽  
Author(s):  
Maheshwar Sharon ◽  
Ritesh Vishwakarma ◽  
Abhijeet Rajendra Phatak ◽  
Golap Kalita ◽  
Nallin Sharma ◽  
...  

Corn cob, an agricultural waste, is paralyzed at different temperatures (700oC, 800oC and 900oC). Microwave absorption of carbon in the frequency range of 2 GHz to 8 GHz is reported. Carbon activated  with 5%  nickel nitrate showed more than 90% absorption of microwave in the frequency range from 6 GHz to 8 GHz, while carbon activated  with 10% Nickel nitrate treated corn cob showed 90% absorption  in the frequency range of 2.5 GHz to 5 GHz. Carbon showing the best absorption are characterized by XRD, Raman spectra and SEM . It is suggested that corn cob treatment   alone with KOH did not improve the microwave absorption, whereas treatment along with nickel nitrate improved the absorption property much better. It is proposed that treatment with nickel nitrate helps in creating suitable pores in carbon   which improved the absorption behavior because while treating carbon with 1N HCl helps to leach out nickel creating equivalent amount of pores in the carbon.


2020 ◽  
Vol 4 (1) ◽  
pp. 1-7
Author(s):  
Made Dirgantara ◽  
Karelius Karelius ◽  
Marselin Devi Ariyanti, Sry Ayu K. Tamba

Abstrak – Biomassa merupakan salah satu energi terbarukan yang sangat mudah ditemui, ramah lingkungan dan cukup ekonomis. Keberadaan biomassa dapat dimaanfaatkan sebagai pengganti bahan bakar fosil, baik itu minyak bumi, gas alam maupun batu bara. Analisi diperlukan sebagai dasar biomassa sebagai energi seperti proksimat dan kalor. Analisis terpenting untuk menilai biomassa sebagai bahan bakar adalah nilai kalori atau higher heating value (HHV). HHV secara eksperimen diukur menggunakan bomb calorimeter, namun pengukuran ini kurang efektif, karena memerlukan waktu serta biaya yang tinggi. Penelitian mengenai prediksi HHV berdasarkan analisis proksimat telah dilakukan sehingga dapat mempermudah dan menghemat biaya yang diperlukan peneliti. Dalam makalah ini dibahas evaluasi persamaan untuk memprediksi HHV berdasarkan analisis proksimat pada biomassa berdasarkan data dari penelitian sebelumnya. Prediksi nilai HHV menggunakan lima persamaan yang dievaluasi dengan 25 data proksimat biomassa dari penelitian sebelumnya, kemudian dibandingkan berdasarkan nilai error untuk mendapatkan prediksi terbaik. Hasil analisis menunjukan, persamaan A terbaik di 7 biomassa, B di 6 biomassa, C di 6 biomassa, D di 5 biomassa dan E di 1 biomassa.Kata kunci: bahan bakar, biomassa, higher heating value, nilai error, proksimat  Abstract – Biomass is a renewable energy that is very easy to find, environmentally friendly, and quite economical. The existence of biomass can be used as a substitute for fossil fuels, both oil, natural gas, and coal. Analyzes are needed as a basis for biomass as energy such as proximate and heat. The most critical analysis to assess biomass as fuel is the calorific value or higher heating value (HHV). HHV is experimentally measured using a bomb calorimeter, but this measurement is less effective because it requires time and high costs. Research on the prediction of HHV based on proximate analysis has been carried out so that it can simplify and save costs needed by researchers. In this paper, the evaluation of equations is discussed to predict HHV based on proximate analysis on biomass-based on data from previous studies. HHV prediction values using five equations were evaluated with 25 proximate biomass data from previous studies, then compared based on error value to get the best predictions. The analysis shows that Equation A predicts best in 7 biomass, B in 6 biomass, C in 6 biomass, D in 5 biomass, and E in 1 biomass. Key words: fuel, biomass, higher heating value, error value, proximate 


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2697
Author(s):  
Gabriel Gerner ◽  
Luca Meyer ◽  
Rahel Wanner ◽  
Thomas Keller ◽  
Rolf Krebs

Phosphorus recovery from waste biomass is becoming increasingly important, given that phosphorus is an exhaustible non-renewable resource. For the recovery of plant nutrients and production of climate-neutral fuel from wet waste streams, hydrothermal carbonization (HTC) has been suggested as a promising technology. In this study, digested sewage sludge (DSS) was used as waste material for phosphorus and nitrogen recovery. HTC was conducted at 200 °C for 4 h, followed by phosphorus stripping (PS) or leaching (PL) at room temperature. The results showed that for PS and PL around 84% and 71% of phosphorus, as well as 53% and 54% of nitrogen, respectively, could be recovered in the liquid phase (process water and/or extract). Heavy metals were mainly transferred to the hydrochar and only <1 ppm of Cd and 21–43 ppm of Zn were found to be in the liquid phase of the acid treatments. According to the economic feasibility calculation, the HTC-treatment per dry ton DSS with an industrial-scale plant would cost around 608 USD. Between 349–406 kg of sulfuric acid are required per dry ton DSS to achieve a high yield in phosphorus recovery, which causes additional costs of 96–118 USD. Compared to current sewage sludge treatment costs in Switzerland, which range between 669 USD and 1173 USD, HTC can be an economically feasible process for DSS treatment and nutrient recovery.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 256
Author(s):  
Florentina Golgovici ◽  
Mariana Prodana ◽  
Florentina Gina Ionascu ◽  
Ioana Demetrescu

The purpose of our study is to compare the behavior of two reprocessed dental alloys (NiCr and CoCr) at different temperatures considering the idea that food and drinks in the oral cavity create various compositions at different pH levels; the novelty is the investigation of temperature effect on corrosion parameters and ion release of dental alloys. Electrochemical stability was studied together with morphology, elemental composition and ions release determination. The results obtained are in good concordance: electrochemistry studies reveal that the corrosion rate is increasing by increasing the temperature. From SEM coupled with EDS, the oxide film formed on the surface of the alloys is stable at low temperatures and a trend to break after 310K. ICP-MS results evidence that in accordance with increasing temperature, the quantities of ions released from the alloys immersed in artificial saliva also increase, though they still remain small, less than 20 ppm.


Sign in / Sign up

Export Citation Format

Share Document