scholarly journals A Comparative Electrochemical and Morphological Investigation on the Behavior of NiCr and CoCr Dental Alloys at Various Temperatures

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 256
Author(s):  
Florentina Golgovici ◽  
Mariana Prodana ◽  
Florentina Gina Ionascu ◽  
Ioana Demetrescu

The purpose of our study is to compare the behavior of two reprocessed dental alloys (NiCr and CoCr) at different temperatures considering the idea that food and drinks in the oral cavity create various compositions at different pH levels; the novelty is the investigation of temperature effect on corrosion parameters and ion release of dental alloys. Electrochemical stability was studied together with morphology, elemental composition and ions release determination. The results obtained are in good concordance: electrochemistry studies reveal that the corrosion rate is increasing by increasing the temperature. From SEM coupled with EDS, the oxide film formed on the surface of the alloys is stable at low temperatures and a trend to break after 310K. ICP-MS results evidence that in accordance with increasing temperature, the quantities of ions released from the alloys immersed in artificial saliva also increase, though they still remain small, less than 20 ppm.

2014 ◽  
Vol 20 (4) ◽  
pp. 571-577 ◽  
Author(s):  
Ivana Dimic ◽  
Ivana Cvijovic-Alagic ◽  
Ivana Kostic ◽  
Aleksandra Peric-Grujic ◽  
Marko Rakin ◽  
...  

Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5). After a certain immersion period (1, 3 and 6 weeks) the concentrations of released ions were determined using Inductively Coupled Plasma - Mass Spectrophotometer (ICP-MS). The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocompatible cobalt-based alloy.


1997 ◽  
Vol 481 ◽  
Author(s):  
H. W. Sheng ◽  
K. Lu ◽  
E. Ma

ABSTRACTZr100−xAlx powder blends have been subjected to ball milling at different temperatures to investigate the amorphization process. At low temperatures the Zr-Al solid solutions amorphized under the polymorphous constraints, whereas at higher temperatures there was an obvious twophase coexistence region. The Al concentration for the complete amorphization of Zr-Al increased with increasing temperature, suggesting a re-entrant melting behavior. Both of the temperature- and composition-dependent amorphization mechanisms are analyzed in terms of the thermodynamic properties of the phases involved, as well as the dynamic effects brought in by the non-equilibrium milling process.


2015 ◽  
Vol 21 (1) ◽  
pp. 111-116 ◽  
Author(s):  
Frank Alifui-Segbaya ◽  
Jeffrey Lewis ◽  
Dominic Eggbeer ◽  
Robert John Williams

Purpose – The purpose of this research paper is to compare corrosion data obtained from additive-manufactured heat-treated (HRx) and non-heat-treated (NHRx) cobalt-chromium (Co–Cr) alloys. Heat treatments are indicated as necessary in complex intra-oral framework production by additive manufacturing to remove accumulated thermal stresses. However, heat treatments have been linked to corrosion in cast dental alloys. Currently, there are few publications on this subject for laser-sintered dental alloys required for academic review. Design/methodology/approach – Five rectangular specimens (n = 5), each with a total surface area of 10.27 cm2, were fabricated for the two groups. Specimens were immersed in an artificial saliva solution suspended by a nylon thread for 42 days at 37°C. Readings for Co, Cr and molybdenum ions released into the solution were obtained using an atomic absorption spectrometer at 1-, 4-, 7-, 14-, 21-, 28-, 35- and 42-day intervals at a detection limit of one part per million. Test methods are in accordance with ISO 10271. Findings – Results showed a higher ion release in the HRx sample, statistically significant at 99 per cent confidence level (p < 0.01). A two-way ANOVA test conducted showed that there was a main effect of day and a main effect of finish, and there was also a significant interaction between these factors. Originality/value – The study concludes that, although ion release in both samples was within the safe level recommended by ISO for the three major alloying elements, heat treatment, indeed, contributed extensively to the reduced corrosion resistance in the laser-sintered Co–Cr alloy. Further biocompatibility tests are recommended.


2018 ◽  
Vol 69 (6) ◽  
pp. 1598-1602
Author(s):  
Alice Arina Ciocan Pendefunda ◽  
Constanta Mocanu ◽  
Doriana Agop Forna ◽  
Cristina Iordache ◽  
Elena Luca ◽  
...  

The purpose of the study is to investigate the electrochemical behavior of two dental alloys: palladium alloy (Palidor) and Ni-Cr alloy (Verasoft) in three types of artificial saliva. Determination of corrosion potential and recording of linear and cyclic polarization curves were performed with PGP201 potentiostat (VoltaLab 21- Radelkis Copenhagen. In order to study the modifications produced on the surface of the electrodes, a complex optical microscope MC 1 research type (IOR, Romania) was used, adapted to a digital camera, which was connected to a computer for the digital acquisition of images . Two metal alloys based on Ag-Pd and Ni-Cr were used for the experiments. The materials used came from different types of dental restorations removed from the oral cavity of the patients after a 5-15 years period. As corrosion environments, three artificial saliva were used: Fusayama, Afnor and Rondelli. The Pd-Ag dental alloy exhibits a very good corrosion resistance and the treatment in the Afnor saliva does not affect the surface of the alloy. Electrochemical behavior in Fusayama-Meyer�s saliva of the alloy surface results in a series of spots representing deposits of insoluble salts resulting from the oxidation process, while in the Rondelli saliva there is a series of small corrosion points on the alloy surface. The behavior of the Verasoft alloy in the Afnor and Rondelli saliva is similar; In both solutions, the potential breakthroughs are very close, but in Fusayama-Meyer�s saliva, the potential for initiation of corrosion points is very low (206 mV), a potential that can be encountered in the oral cavity. All metals and metal alloys, even the noble and semi-precious ones, are susceptible to corrosion, forming compounds with properties different from those of the metal or base alloy, which change their surface condition. Metallic dental restorations are permanently affected by the factors of the oral environment (physical-mechanical, chemical and biological), being subjected to a continuous process of degradation.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 202
Author(s):  
Réka Barabás ◽  
Carmen Ioana Fort ◽  
Graziella Liana Turdean ◽  
Liliana Bizo

In the present work, ZrO2-based composites were prepared by adding different amounts of antibacterial magnesium oxide and bioactive and biocompatible hydroxyapatite (HAP) to the inert zirconia. The composites were synthesized by the conventional ceramic processing route and morpho-structurally analyzed by X-ray powder diffraction (XRPD) and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS). Two metallic dental alloys (i.e., Ni–Cr and Co–Cr) coated with a chitosan (Chit) membrane containing the prepared composites were exposed to aerated artificial saliva solutions of different pHs (i.e., 4.3, 5, 6) and the corrosion resistances were investigated by electrochemical impedance spectroscopy technique. The obtained results using the two investigated metallic dental alloys shown quasi-similar anticorrosive properties, having quasi-similar charge transfer resistance, when coated with different ZrO2-based composites. This behavior could be explained by the synergetic effect between the diffusion process through the Chit-composite layer and the roughness of the metallic electrode surface.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1585
Author(s):  
Hanbin Wang ◽  
Jinshun Bi ◽  
Mengxin Liu ◽  
Tingting Han

This work investigates the different sensitivities of an ion-sensitive field-effect transistor (ISFET) based on fully depleted silicon-on-insulator (FDSOI). Using computer-aided design (TCAD) tools, the sensitivity of a single-gate FDSOI based ISFET (FDSOI-ISFET) at different temperatures and the effects of the planar dual-gate structure on the sensitivity are determined. It is found that the sensitivity increases linearly with increasing temperature, reaching 890 mV/pH at 75 °C. By using a dual-gate structure and adjusting the control gate voltage, the sensitivity can be reduced from 750 mV/pH at 0 V control gate voltage to 540 mV/pH at 1 V control gate voltage. The above sensitivity changes are produced because the Nernst limit changes with temperature or the electric field generated by different control gate voltages causes changes in the carrier movement. It is proved that a single FDSOI-ISFET can have adjustable sensitivity by adjusting the operating temperature or the control gate voltage of the dual-gate device.


Author(s):  
Mohammad Jamali ◽  
Amir Abbas Izadpanah ◽  
Masoud Mofarahi

AbstractIn this work, solubility of hydrogen in some alkenes was investigated at different temperatures and pressures. Solubility values were calculated using the Peng–Robinson equation of state. Binary interaction parameters were calculated using fitting the equation of state on experimental data, Group contribution method and Moysan correlations and total average absolute deviation for these methods was 3.90, 17.60 and 13.62, respectively. Because hydrogen solubility in Alkenes is low, Henry’s law for these solutions were investigated, too. Results of calculation showed with increasing temperature, Henry’s constant was decreased. The temperature dependency of Henry’s constants of hydrogen in ethylene and propylene was higher than to other alkenes. In addition, using Van’t Hoff equation, the thermodynamic parameters for dissolution of hydrogen in various alkenes were calculated. Results indicated that the dissolution of hydrogen was spontaneous and endothermic. The total average of dissolution enthalpy ($${\Delta H}^{^\circ }$$ Δ H ∘ ) and Gibbs free energy ($${\Delta G}^{^\circ }$$ Δ G ∘ ) for these systems was 3.867 kJ/mol and 6.361 kJ/mol, respectively. But dissolution of hydrogen in almost of alkenes was not an entropy-driven process.


2009 ◽  
Vol 615-617 ◽  
pp. 311-314 ◽  
Author(s):  
W.S. Loh ◽  
J.P.R. David ◽  
B.K. Ng ◽  
Stanislav I. Soloviev ◽  
Peter M. Sandvik ◽  
...  

Hole initiated multiplication characteristics of 4H-SiC Separate Absorption and Multiplication Avalanche Photodiodes (SAM-APDs) with a n- multiplication layer of 2.7 µm were obtained using 325nm excitation at temperatures ranging from 300 to 450K. The breakdown voltages increased by 200mV/K over the investigated temperature range, which indicates a positive temperature coefficient. Local ionization coefficients, including the extracted temperature dependencies, were derived in the form of the Chynoweth expression and were used to predict the hole multiplication characteristics at different temperatures. Good agreement was obtained between the measured and the modeled multiplication using these ionization coefficients. The impact ionization coefficients decreased with increasing temperature, corresponding to an increase in breakdown voltage. This result agrees well with the multiplication characteristics and can be attributed to phonon scattering enhanced carrier cooling which has suppressed the ionization process at high temperatures. Hence, a much higher electric field is required to achieve the same ionization rates.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Guanghui Jiang ◽  
Jianping Zuo ◽  
Teng Ma ◽  
Xu Wei

Understanding the change of permeability of rocks before and after heating is of great significance for exploitation of hydrocarbon resources and disposal of nuclear waste. The rock permeability under high temperature cannot be measured with most of the existing methods. In this paper, quality, wave velocity, and permeability of granite specimen from Maluanshan tunnel are measured after high temperature processing. Quality and wave velocity of granite decrease and permeability of granite increases with increasing temperature. Using porosity as the medium, a new wave velocity-permeability model is established with modified wave velocity-porosity formula and Kozeny-Carman formula. Under some given wave velocities and corresponding permeabilities through experiment, the permeabilities at different temperatures and wave velocities can be obtained. By comparing the experimental and the theoretical results, the proposed formulas are verified. In addition, a sensitivity analysis is performed to examine the effect of particle size, wave velocities in rock matrix, and pore fluid on permeability: permeability increases with increasing particle size, wave velocities in rock matrix, and pore fluid; the higher the rock wave velocity, the lower the effect of wave velocities in rock matrix and pore fluid on permeability.


2012 ◽  
Vol 159 ◽  
pp. 346-350
Author(s):  
Shu Min Liu ◽  
Jian Bin Zhang

The elevated temperature short-time tensile test with the sample of casting low nickel stainless steel was conducted on SHIMADZU AG-10 at ten temperatures 300, 500, 600, 700, 800, 950, 1000, 1050, 1100, and 1250°C, respectively. The stress-strain curves with the thermal deformation at the different temperatures, the peak stress intensity-temperature curve, and the reduction percentage of cross sectional area-temperature curve were obtained. Metallographic test samples were prepared and the morphology of deforming zone was observed by optical microscopy. The experimental results show that the tensile strength of the test samples decreases with increasing temperature. From 300 to 800°C, the work harding occurred and the tensile strength increases with increasing strain. The work softening occurred and the tensile strength decreases with increasing strain at temperatures of 800 to 1250°C. The minimum value of reduction percentage was measured at 800 °C. The austenite and delta-ferrite are the main phase in the tested samples. When the tensile temperatures are increased to 1200°C, the delta-ferrite became thinner and broke down to be spheroidized.


Sign in / Sign up

Export Citation Format

Share Document