scholarly journals The effect of testing procedure on DSC measurements of Gd-Ti-Zr alloy using ZrO2 container

Author(s):  
P. Turalska ◽  
M. Homa ◽  
N. Sobczak ◽  
A. Gazda ◽  
A. Wierzbicka-Miernik ◽  
...  

Differential Scanning Calorimetry (DSC) was applied to determine the critical temperatures of phase transformations in the Gd40Ti30Zr30 alloy (wt%). The comparative measurements were carried out using three types of measuring devices at a temperature RT- 1650?C in the same flowing gas (Ar, 99.9992%) but applying different testing procedures, which allowed obtaining dissimilar oxygen contents in the surrounding atmosphere. The high temperature interaction and reactivity taking place between molten alloy samples and ZrO2 container during DSC tests were evaluated by structural analysis of the resulting interfaces using alloy samples solidified inside the ZrO2 containers. The conducted research has demonstrated methodological difficulties accompanying measurements of the thermophysical properties of Gd-rich alloys by the container-assisted DSC method, particularly when the tests are performed in flowing argon atmosphere with significantly reduced oxygen content. Under non-oxidizing conditions, the degradation of ZrO2 container can take place during DSC testing because the selected Gd40Ti30Zr30 alloy reacts with the ZrO2 to form a continuous interfacial reaction product layer. Under slightly oxidizing conditions, the gadolinium oxide formed in situ on the alloy surface, plays the role of a barrier for direct contact between molten alloy and container and thus may suppress or even prevent the degradation of the container and its subsequent strong bonding with the holder.

Author(s):  
A.N. Shushpanov ◽  
◽  
A.Ya. Vasin ◽  
V.M. Raykova ◽  
G.G. Gadzhiev ◽  
...  

The article considers two intermediate products of positive photoresists (1,2-naphthoquinonediazide-(2)-5-sulfonic acid of monosodium salt — Dye M and 1,2-naphthoquinonediazide-(2)-5-sulfochloride — Dye N2) from the standpoint of the tendency to explosive transformation. The experimental values of flash points determined on the OTP setup were 130 °C for Dye M and 95 °C for Dye N2. These values are close to the temperatures of the beginning of intensive exothermic decomposition (132 and 111 °C, respectively) obtained by thermogravimetric analysis. In addition, this analysis showed the presence of exothermic peaks in the studied samples both in the air and in an inert atmosphere of helium, which is a necessary condition for the manifestation of a tendency to explosive transformation. To confirm the possibility of explosive transformation, the flash points of substances were also determined by the calculation method according to the formula, which is a consequence of the problem of thermal explosion during convective heat exchange with the environment, and gave a result close to the experimental one (the values were 138 and 105 °C, respectively). For this calculation the following was used: the kinetic parameters determined by the Kissinger method, the values of the density of substances determined on an automatic pycnometer, as well as the values of the heat of explosive transformation obtained with the help of the Real computer thermodynamic program. The research results confirming the tendency of the investigated compounds to explosive transformation, as well as the critical temperatures, exceeding which is unacceptable, were transferred to the production of FGUP GNTs NIOPIK to create a safe technological process, safe storage and transportation conditions. Considering the accuracy of the measuring devices, the process temperature should not exceed 125 °C for Dye M and 90 °C for Dye N2. The conducted studies and calculations show that the computational and experimental approaches have good convergence, give values in a close temperature range, and increase the reliability of the obtained results.


Food Industry ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 29-36
Author(s):  
Alexander Vereshchagin ◽  
Irina Reznichenko ◽  
Nikolay Bychin

The article concerns the research specificity of model systems such as cocoa butter – palm olein, cocoa butter – sucrose and cocoa butter – glucose syrup by the differential scanning calorimetry (DSC) method. The researchers run experiments in the temperature range from –100 to –50°C at a heating rate of 10 °C/min. In the cacao butter – palm olein system an eutectic occurs with a palm olein content of 30.0 % indicating the limited solubility of palm olein in cocoa butter. In the cocoa butter – sucrose system, cocoa butter crystallizes as in the α-form (10,0– 30,0; 60.0–90.0 % MK), and as a mixture of α-and β-forms of MK (40.0; 50,0; 70,0 and 80.0 %). Sucrose stabilizes low-temperature polymorphic modifications of cocoa butter. In the cocoa butter – glucose syrup system, temperature of samples melting is 21-22 °C. This composition is promising for use as a filling of confectionery products and glazes production. In this regard, a man can use glucose syrup only in the candy cases production. The role of surfactants used for the formation and stabilization of cocoa butter polymorphs and increasing the thermal stability of the shock-lad without the introduction of palm stearin requires separate consideration.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3950
Author(s):  
Abeer Alassod ◽  
Syed Rashedul Islam ◽  
Mina Shahriari Khalaji ◽  
Rogers Tusiime ◽  
Wanzhen Huang ◽  
...  

Compositing is an interesting strategy that has always been employed to introduce or enhance desired functionalities in material systems. In this paper, sponges containing polypropylene, lignin, and octavinyl-polyhedral oligomeric silsesquioxane (OV-POSS) were successfully prepared via an easy and elegant strategy called thermally induced phase separation (TIPS). To fully explore the behaviour of different components of prepared sponges, properties were characterized by a thermogravimetric analyser (TGA), differential scanning calorimetry (DSC), Fourier transform infrared measurement (FTIR), and scanning electron microscopy (SEM). Furthermore, wettability properties toward an organic liquid and oil were investigated. The FTIR analysis confirmed the chemical modification of the components. TGA and DSC measurements revealed thermal stability was much better with an increase in OV-POSS content. OV-POSS modified sponges exhibited ultra-hydrophobicity and high oleophilicity with water contact angles of more than 125°. The SEM revealed that POSS molecules acted as a support for reduced surface roughness. Moreover, OV-POSS-based blend sponges showed higher sorption capacities compared with other blend sponges without OV-POSS. The new blend sponges demonstrated a potential for use as sorbent engineering materials in water remediation.


2011 ◽  
Vol 76 (5) ◽  
pp. 553-566
Author(s):  
Christian Näther ◽  
Inke Jeß

Clobetasone butyrate was investigated for polymorphism and pseudopolymorphism. Solvent mediated conversion experiments reveal that the commercially available form I represent the thermodynamically most stable form at room temperature and DSC measurements shows that it should also be the most stable form until melting. Form I crystallizes in space groupP212121with three crystallographically independent molecules of similar conformation. From methanol an additional pseudo polymorphic form was discovered. In the crystal structure (space groupP212121) the solvent molecules are connected to the clobetasone butyrate molecules by O–H···O hydrogen bonding. Investigations of the solvate using thermogravimetry, differential thermoanalysis as well as differential scanning calorimetry proves, that on solvent removal an amorphous form is obtained that crystallizes into form I on further heating.


2021 ◽  
Vol 882 ◽  
pp. 21-27
Author(s):  
Seyed Veghar Seyedmohammadi ◽  
Amin Radi ◽  
Guney Guven Yapici

In the present work, the effects of artificial aging treatment on the transformation temperatures and hardness of Cu-Al-Mn shape memory alloy have been investigated. The aging processes have been performed on the one-time re-melted and 90% rolled samples. Differential scanning calorimetry reveals that reverse transformation is present for the re-melted sample which is aged at 400°C. However, in 90% rolled condition, this transformation takes place at 200°C and 300°C. Hardness examination shows that the aged specimens possess higher values in hardness in comparison to un-aged samples at all studied temperatures. Although, the peak-aged condition was demonstrated at 300°C for the re-melted sample, the rolled sample displayed increased hardness levels up to 500°C. Based on the DSC measurements and microstructural observations, it can be asserted that the thermo-mechanical processing including rolling plus aging at 300°C provides favorable transformation characteristics for shape memory behavior.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3035
Author(s):  
Dovydas Karoblis ◽  
Diana Griesiute ◽  
Kestutis Mazeika ◽  
Dalis Baltrunas ◽  
Dmitry V. Karpinsky ◽  
...  

In this study, a highly crystalline bismuth ferrite (BFO) powder was synthesized using a novel, very simple, and cost-effective synthetic approach. It was demonstrated that the optimal annealing temperature for the preparation of highly-pure BFO is 650 °C. At lower or higher temperatures, the formation of neighboring crystal phases was observed. The thermal behavior of BFO precursor gel was investigated by thermogravimetric and differential scanning calorimetry (TG-DSC) measurements. X-ray diffraction (XRD) analysis and Mössbauer spectroscopy were employed for the investigation of structural properties. Scanning electron microscopy (SEM) was used to evaluate morphological features of the synthesized materials. The obtained powders were also characterized by magnetization measurements, which showed antiferromagnetic behavior of BFO powders.


Author(s):  
Carlos R. Wolf ◽  
Emir Grave

Polypropylene is a thermoplastic polymer, widely employed by converter industries to produce different plastic objects. In order to control and optimize the final properties of the polypropylene material, the evaluation of transition temperatures and enthalpies by Differential Scanning Calorimetry (DSC) has a very important role. Therefore, it is fundamental to know how the analytical conditions influence the results. In this study heating and cooling rates, 10°C/min and 20°C/min, and two different rates of nitrogen flow, 20mL/min and 50mL/min were investigated. It was concluded that thermal properties are influenced by rates of heating and rates of nitrogen flow. The best precision was obtained with the low heating rate, 10°C/min, and high flow rate, 50mL/min. These conditions are being used with the DSC method for polyolefin quality control and material characterization.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 259
Author(s):  
Natalia Pawlik ◽  
Barbara Szpikowska-Sroka ◽  
Tomasz Goryczka ◽  
Ewa Pietrasik ◽  
Wojciech A. Pisarski

The synthesis and characterization of multicolor light-emitting nanomaterials based on rare earths (RE3+) are of great importance due to their possible use in optoelectronic devices, such as LEDs or displays. In the present work, oxyfluoride glass-ceramics containing BaF2 nanocrystals co-doped with Tb3+, Eu3+ ions were fabricated from amorphous xerogels at 350 °C. The analysis of the thermal behavior of fabricated xerogels was performed using TG/DSC measurements (thermogravimetry (TG), differential scanning calorimetry (DSC)). The crystallization of BaF2 phase at the nanoscale was confirmed by X-ray diffraction (XRD) measurements and transmission electron microscopy (TEM), and the changes in silicate sol–gel host were determined by attenuated total reflectance infrared (ATR-IR) spectroscopy. The luminescent characterization of prepared sol–gel materials was carried out by excitation and emission spectra along with decay analysis from the 5D4 level of Tb3+. As a result, the visible light according to the electronic transitions of Tb3+ (5D4 → 7FJ (J = 6–3)) and Eu3+ (5D0 → 7FJ (J = 0–4)) was recorded. It was also observed that co-doping with Eu3+ caused the shortening in decay times of the 5D4 state from 1.11 ms to 0.88 ms (for xerogels) and from 6.56 ms to 4.06 ms (for glass-ceramics). Thus, based on lifetime values, the Tb3+/Eu3+ energy transfer (ET) efficiencies were estimated to be almost 21% for xerogels and 38% for nano-glass-ceramics. Therefore, such materials could be successfully predisposed for laser technologies, spectral converters, and three-dimensional displays.


PEDIATRICS ◽  
1989 ◽  
Vol 83 (5) ◽  
pp. 849-851
Author(s):  
Titus H. J. Huisman

Testing of cord blood or newborn blood samples for hemoglobin abnormalities should include clinically important hemoglobinopathies other than sickle cell anemia (SS), such as SC, SD, SO, S-β- thalassemia (thal), EE, SE, and α-thal, and should place the quality of the testing procedures (ie, accuracy of diagnosis) above quantity (ie, number of samples tested over a given period). There is no single method available that is suitable for the identification of each of the numerous abnormalities; thus, at least two, and often more than two, procedures must be used to reach a definitive diagnosis. For this reason, blood samples collected in vacutainers with ethylenediaminetetraacetic acid as anticoagulant are preferred to those collected on filter papers. The latter approach also has the disadvantage that, under a less than optimal transport system, hemoglobin is readily modified (oxidation, glycosylation, protein-protein interaction), producting extra bands or peaks in electrophoretic or chromatographic separations that interfere with an appropriate identification of various genetically determined hemoglobin variants. In our laboratories, in which hemoglobin identification has been routine for more than 25 years, we consider the following procedures acceptable primary testing methods: starch gel electrophoresis at pH 8.9, cellulose acetate electrophoresis at pH 8.5 to 8.9, isoelectric focusing, and fast cation exchange high performance liquid chromatography (HPLC). The following five methods are excellent confirmatory testing procedures: citrate agar electrophoresis at pH 6.1, cation or anion exchange macrochromatography, isoelectric focusing, cation exchange HPLC, and immunologic procedures. Combinations of these techniques will often lead to acceptable data, and the general approach followed in our institute is given in Fig 1. Cellulose acetate electrophoresis at alkaline pH is still the primary testing procedure, and citrate agar electrophoresis at pH 6.1 and micro-HPLC procedures are the main confirmatory methods.


Sign in / Sign up

Export Citation Format

Share Document