scholarly journals Cerium doped hydroxyapatite nanoparticles synthesized by coprecipitation method

2016 ◽  
Vol 81 (4) ◽  
pp. 433-446 ◽  
Author(s):  
Carmen Ciobanu ◽  
Cristina Popa ◽  
Daniela Predoi

The present work reports a simple coprecipitation adapted method for the synthesis of stable Ce substituted to Ca hydroxyapatite (HAp) nanoparticles. The structural and morphological properties of Ce doped hydroxyapatite (Ce:HAp) were characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis (EDAX). The optical properties of Ce doped hydroxyapatite were also investigated using Fourier Transform Infrared (FTIR) spectroscopy, FT Raman spectroscopy and photoluminescence analysis. The results of the XRD studies revealed the progressive increase in the a- and c-axes with increasing of Ce concentrations. In the FTIR studies of Ce:HAp powders a similar structure to hydroxyapatite was observed. IR and Raman wavenumbers and the peak strength of the bands associated to the P-O and O-H bonds decreases progressively with the increase of Ce concentration. All the emission maxima could be attributed to the 5d-4f transitions of Ce ions. The displacement of maximum emission bands with the increase of Cerium in the samples is in agreement with the results obtained by XRD studies. The Ce:HAp samples with xCe =0.03 and 0.05 exhibited significant antibacterial activity against Staphylococcus aureus ATCC 6538 and E. coli 714 bacterial strains compared to Ce:HAp samples with xCe =0 (pure HAp) and 0.01.

2006 ◽  
Vol 16 (01n02) ◽  
pp. 127-136
Author(s):  
P. MALAR ◽  
TAPASH RANJAN RAUTRAY ◽  
V. VIJAYAN ◽  
S. KASIVISWANATHAN

Polycrystalline ingots of CuInSe 2 and CuIn 3 Se 5 were synthesized by melt-quench technique starting from the stoichiometric mixture of constituent elements. X-ray Diffraction (XRD) studies confirmed the single-phase nature of the materials. Compositional analysis by Particle Induced X-ray Emission (PIXE) showed that the compounds are near stoichiometric. Thin films of CuInSe 2 and CuIn 3 Se 5 were grown from pre-synthesized CuInSe 2 and CuIn 3 Se 5 powders. The films were polycrystalline, single-phase and near stoichiometric in nature, as indicated by Transmission Electron Microscopy (TEM) and PIXE studies.


2016 ◽  
Vol 87 (1) ◽  
pp. 81-90 ◽  
Author(s):  
Vincent Mukwaya ◽  
Weidong Yu ◽  
Rabie AM Asad ◽  
Hajo Yagoub

Cellulose nano fibrils (CNFs) were isolated from banana rachis bran using enzyme hydrolysis with subsequent ultra-sonic treatment. The CNFs and bran were characterized by particle size distribution (only the CNFs), X-ray diffraction (XRD), Thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy; the morphology of the banana rachis fiber and CNFs was observed using scanning electron microscopy and transmission electron microscopy, respectively. The furnished nano fibrils had an average diameter of 14.02 ± 2.10 nm and length of 619.6 ± 90.7 nm. The aspect ratio of the CNFs is in the range of long fibrils, that is 44.18. XRD studies revealed that CNFs (48.83%) were more crystalline than the banana bran (27.76%). TGA and derivative thermogravimetry thermograms showed that CNFs were more thermally stable than the bran.


2013 ◽  
Vol 678 ◽  
pp. 136-139
Author(s):  
S. Kanimozhi ◽  
Dhandapani Vishnushankar ◽  
V. Veeravazhuthi

Lead sulfide (PbS) nanoparticles have been synthesized by photo chemical method and also in the dark ambient at room temperature. The pH of the solution is maintained by adding NaOH. The as-prepared PbS nanoparticles have been characterized by X-Ray Diffraction (XRD), Scanning electron microscopy (SEM), Energy-dispersive Analysis of X-ray (EDAX) and Transmission Electron Microscopy (TEM). XRD studies reveal the crystalline nature of the particles. Grain size values are calculated using Scherrer’s formula and compared with the standard values. SEM picture shows a flower like structure in the sample synthesized at dark ambient, whereas the samples synthesized in light reveals the presence of varied nanostructures like nanorods, nanowires and nanoparticles. Size of the photo chemically synthesized PbS particles observed from TEM lies between 30nm to 60nm. From EDAX we conclude that the composition is nearly stoichiometric.


2005 ◽  
Vol 11 (2) ◽  
pp. 133-137 ◽  
Author(s):  
Ram Kishore ◽  
C. Hotz ◽  
H.A. Naseem ◽  
W.D. Brown

Solid phase crystallization of plasma-enhanced chemical-vapor-deposited (PECVD) amorphous silicon (α-Si:H) in α-Si:H/Al and Al/α-Si:H structures has been investigated using transmission electron microscopy (TEM) and X-ray diffraction (XRD). Radiative heating has been used to anneal films deposited on carbon-coated nickel (Ni) grids at temperatures between 200 and 400°C for TEM studies. α-Si:H films were deposited on c-Si substrates using high vacuum (HV) PECVD for the XRD studies. TEM studies show that crystallization of α-Si:H occurs at 200°C when Al film is deposited on top of the α-Si:H film. Similar behavior was observed in the XRD studies. In the case of α-Si:H deposited on top of Al films, the crystallization could not be observed at 400°C by TEM and even up to 500°C as seen by XRD.


2020 ◽  
Vol 9 (4) ◽  
pp. 1615-1626

In this study, a new bismuth tin eutectic alloy and other samples of the same composition doped with variable concentration of silver vanadate nanorods were prepared using new route powder metallurgy. X-ray diffraction of prepared silver vanadate approves the formation of  phase silver vanadate (-AgVO3). Transmission electron microscopy shows the formation of AgVO3 nanorods of radius ranging (20-40 nm). X-ray diffraction of alloys doped with silver vanadate and mechanical tests show that hardness and creep behavior data are composition-dependent parameters with silver vanadate content. Antimicrobial tests against pathogenic grams, fungi, and yeast showed that the addition of silver vanadate nanorods stimulates the action of hydride alloy and increases their activity against bacterial strains. In hospitals, biomedical devices may contaminate infection; doping devices with nanoparticles may make it auto clean besides conserving its mechanical properties.


Biomimetics ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 41 ◽  
Author(s):  
Ahmed F. Halbus ◽  
Tommy S. Horozov ◽  
Vesselin N. Paunov

Magnesium hydroxide nanoparticles (Mg(OH)2NPs) have recently attracted significant attention due to their wide applications as environmentally friendly antimicrobial nanomaterials, with potentially low toxicity and low fabrication cost. Here, we describe the synthesis and characterisation of a range of surface modified Mg(OH)2NPs, including particle size distribution, crystallite size, zeta potential, isoelectric point, X-ray diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), energy dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). We explored the antimicrobial activity of the modified Mg(OH)2NPs on the microalgae (C. reinhardtii), yeast (S. cerevisiae) and Escherichia coli (E. coli). The viability of these cells was evaluated for various concentrations and exposure times with Mg(OH)2NPs. It was discovered that the antimicrobial activity of the uncoated Mg(OH)2NPs on the viability of C. reinhardtii occurred at considerably lower particle concentrations than for S. cerevisiae and E. coli. Our results indicate that the antimicrobial activity of polyelectrolyte-coated Mg(OH)2NPs alternates with their surface charge. The anionic nanoparticles (Mg(OH)2NPs/PSS) have much lower antibacterial activity than the cationic ones (Mg(OH)2NPs/PSS/PAH and uncoated Mg(OH)2NPs). These findings could be explained by the lower adhesion of the Mg(OH)2NPs/PSS to the cell wall, because of electrostatic repulsion and the enhanced particle-cell adhesion due to electrostatic attraction in the case of cationic Mg(OH)2NPs. The results can be potentially applied to control the cytotoxicity and the antimicrobial activity of other inorganic nanoparticles.


Author(s):  
M Karthikeyan ◽  
A Jafar Ahamed ◽  
P Vijaya Kumar

The present investigation, the successful preparation of pure ZnO (Z1) NPs and SrBa dual doped ZnO (Z2) NPs by chemical co-precipitation technique without use of any capping agent. The structural and morphological properties of Z1 and Z2 NPs were analyzed using X-ray diffraction (XRD) studies, Field emission scanning electron microscopy (FESEM), Elemental analysis (EDAX), Fourier transform infrared spectroscopy (FTIR). An optical property was studied by UV–Vis spectroscopy and Photoluminescence (PL) spectra. The antimicrobial activity of Z1 and Z2 NPs has been investigated against Staphylococcus aureus and Klebsiella pneumoniae bacterial strains. It has been interestingly observed that Z2 NPs has enhanced the inhibitory activity than that of Z1 NPs against S. aureus and more efficiently than the K. pneumoniae bacterial strain.


2012 ◽  
Vol 2012 ◽  
pp. 1-4
Author(s):  
M. M. Chili ◽  
V. S. R. Rajasekhar Pullabhotla ◽  
N. Revaprasadu

We report the synthesis of PVP-capped Au-CdSe hybrid nanostructures synthesized using the UV-irradiation method. The high resolution transmission electron microscopy (HRTEM) and powder X-ray diffraction (XRD) studies confirm the presence of the hybrid gold and CdSe nanoparticles.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 950
Author(s):  
Mohammad Oves ◽  
Mohammad Omaish Ansari ◽  
Reem Darwesh ◽  
Afzal Hussian ◽  
Mohamed F. Alajmi ◽  
...  

In this work, Pani and Pani@g-C3N4 was synthesized by in situ oxidative polymerization methodology of aniline, in the presence of g-C3N4. The as prepared Pani@g-C3N4 was characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction (XRD). The morphological analysis showed well dispersed Pani in g-C3N4, as well as the coating of Pani on g-C3N4. The XRD further revealed this, and peaks of Pani as well as g-C3N4 was observed, thereby suggesting successful synthesis of the composite. The DC electrical conductivity studies under isothermal and cyclic aging conditions showed high stability of composites over 100 °C. Further, the synthesized composite material proved to be an excellent antimicrobial agent against both type i.e., gram positive Streptococcus pneumoniae and negative bacteria Escherichia coli. In the zone inhibition assay 18 ± 0.5, 16 ± 0.75 and 20 ± 0.5, 22 ± 0.5 mm zone diameter were found against E. coli and S. pneumoniae in presence of pure g-C3N4 and Pani@g-C3N4 at 50 µg concentrations, respectively. Further antimicrobial activity in the presence of sunlight in aqueous medium showed that Pani@g-C3N4 is more potent than pure g-C3N4.


2011 ◽  
Vol 14 ◽  
pp. 93-103 ◽  
Author(s):  
Magali Ugalde ◽  
E. Chavira ◽  
Martha T. Ochoa-Lara ◽  
Carlos Quintanar

We report a new synthesis method to obtain palladium nano-crystals by sol-gel polymerized with acrylamide. From thermogravimetric analysis (TGA) studies, we found PdO and Pd compounds in the xerogel sample, at 550 °C, and over 900 °C we detected only metallic Pd. These results were corroborated by powder X-Ray Diffraction (XRD), High Resolution Scanning Electron Microscopy (HRSEM), and Transmission Electron Microscopy (TEM). XRD studies exhibit the lines from the tetragonal structure (PDF 41-1107) of PdO compound and from the cubic structure (PDF 46-1043) of Pd metallic. HRSEM micrographs show morphologies from the sample very sensitive to heat treatment. Finally, TEM images show crystals of ~8 nm in diameter.


Sign in / Sign up

Export Citation Format

Share Document