scholarly journals Antifungal activity of six plant essential oils from Serbia against Trichoderma aggressivum f. europaeum

2014 ◽  
Vol 29 (4) ◽  
pp. 291-297 ◽  
Author(s):  
Rada Djurovic-Pejcev ◽  
Ivana Potocnik ◽  
Svetlana Milijasevic-Marcic ◽  
Biljana Todorovic ◽  
Emil Rekanovic ◽  
...  

Six essential oils (EOs) extracted from plants originating in Serbia were assayed for inhibitory and fungicidal activity against a major fungal pathogen of button mushroom causing green mould disease, Trichoderma agressivum f. europaeum. The strongest activity was demonstrated by the oils of basil (Ocimum basilicum L.) and peppermint (Mentha piperita L.). Medium antifungal activity of St. John's wort (Hypericum perforatum L.) and walnut [Juglans regia (F)] oils was also recorded. Oils extracted from yarrow (Achillea millepholium L.) and juniper (Juniperus communis L.) exhibited the lowest activity. Peppermint oil showed fungicidal effect on the pathogen, having a minimum fungicidal concentration of 0.64 ?l ml-1. The main components of peppermint essential oil were menthone (37.02%), menthol (29.57%) and isomenthone (9.06%).

2020 ◽  
Vol 35 (3) ◽  
pp. 173-181
Author(s):  
Jelena Lukovic ◽  
Rada Djurovic-Pejcev ◽  
Tijana Djordjevic ◽  
Svetlana Milijasevic-Marcic ◽  
Natasa Duduk ◽  
...  

Five essential oils isolated from plants originating from Serbia and ten combinations of the selected essential oils were assayed to test their inhibitory and fungicidal activity against Trchoderma aggressivum f. europaeum Samuels & W. Gams using two distinctive methods: microdilution and fumigant macrodilution methods. The strongest activity was demonstrated by spearmint (Mentha spicata L.) and thyme (Thymus serpyllum L.) oils at the minimum inhibitory concentration (MIC) of 6.25 ?l ml-1 using microdilution, and 0.16 ?l ml-1 of air using fumigant macrodilution method. The antifungal activity of basil (Ocimum basilicum L.) and peppermint (Mentha piperita L.) was medium, while the oil extracted from St. John?s wort (Hypericum perforatum L.) exhibited the lowest activity. None of the selected essential oils exhibited fungicidal effect at minimal fungicidal concentrations (?FC) of over 25 ?l ml-1 or 0.32 ?l ml-1of air, using micro- and macrodilution, respectively. When microdilution was used, the strongest antifungal activity was demonstrated by two oil combinations: spearmint-thyme and spearmint-peppermint, having MIC and MFC values of 3.75 ?l ml-1. The lowest activity was demonstrated by the basil-St. John?s wort essential oil combination, at 30 ?l ml-1 MIC, and MFC exceeding 30 ?l ml-1. The obtained results indicate possible synergistic effects of essential oils and their components.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1567
Author(s):  
Ippolito Camele ◽  
Daniela Gruľová ◽  
Hazem S. Elshafie

Several economically important crops, fruits and vegetables are susceptible to infection by pathogenic fungi and/or bacteria postharvest or in field. Recently, plant essential oils (EOs) extracted from different medicinal and officinal plants have had promising antimicrobial effects against phytopathogens. In the present study, the potential microbicide activity of Mentha × piperita cv. ‘Kristinka’ (peppermint) EO and its main constituents have been evaluated against some common phytopathogens. In addition, the cell membrane permeability of the tested fungi and the minimum fungicidal concentrations were measured. The antifungal activity was tested against the following postharvest fungi: Botrytis cinerea, Monilinia fructicola, Penicillium expansum and Aspergillus niger, whereas antibacterial activity was evaluated against Clavibacter michiganensis, Xanthomonas campestris, Pseudomonas savastanoi and P. syringae pv. phaseolicola. The chemical analysis has been carried out using GC-MS and the main components were identified as menthol (70.08%) and menthone (14.49%) followed by limonene (4.32%), menthyl acetate (3.76%) and β-caryophyllene (2.96%). The results show that the tested EO has promising antifungal activity against all tested fungi, whereas they demonstrated only a moderate antibacterial effect against some of the tested bacteria.


2018 ◽  
Vol 17 (6) ◽  
pp. 167-174 ◽  
Author(s):  
Małgorzata Schollenberger ◽  
Tomasz M. Staniek ◽  
Elżbieta Paduch-Cichal ◽  
Beata Dasiewicz ◽  
Agnieszka Gadomska-Gajadhur ◽  
...  

Plant essential oils of six aromatic herb species and interspecies hybrids of the family Lamiaceae – chocolate mint (Mentha piperita × ‘Chocolate’), pineapple mint (Mentha suaveolens ‘Variegata’), apple mint (Mentha × rotundifolia), spearmint (Mentha spicata), orange mint (Mentha × piperita ‘Granada’) and strawberry mint (Mentha × villosa ‘Strawberry’) – were investigated for antimicrobial effects against plant pathogenic bacteria: Agrobacterium tumefaciens, Pseudomonas syringae pv. syringae and Xanthomonas arboricola pv. corylina. The screening was carried out in vitro on agar plates filled with the target organism. All essential oils screened exhibited a higher level of antibacterial activity against A. tumefaciens and X. arboricola pv. corylina than streptomycin used as a standard in all tests. The antimicrobial effect of streptomycin and five mint oils was at the same level for P. syringae pv. syringae. There were no significant differences in the influence of the chocolate mint oil on the growth inhibition of all bacteria tested. Plant essential oils from pineapple mint, apple mint, spearmint and strawberry mint showed the weakest antimicrobial activity against P. syringae pv. syringae and the strongest towards A. tumefaciens and X. arboricola pv. corylina. The essential oils from strawberry mint, pineapple mint, spearmint and apple mint had the strongest effect on A. tumefaciens, and the lowest inhibitory activity was exhibited by the chocolate mint and orange mint essential oils. X. arboricola pv. corylina was the most sensitive to the strawberry mint, pineapple mint and spearmint oils. The chocolate mint oil showed the greatest activity against P. syringae pv. syringae.


Antibiotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 31
Author(s):  
Magdaléna Kapustová ◽  
Giuseppe Granata ◽  
Edoardo Napoli ◽  
Andrea Puškárová ◽  
Mária Bučková ◽  
...  

Nanotechnology is a new frontier of this century that finds applications in various fields of science with important effects on our life and on the environment. Nanoencapsulation of bioactive compounds is a promising topic of nanotechnology. The excessive use of synthetic compounds with antifungal activity has led to the selection of resistant fungal species. In this context, the use of plant essential oils (EOs) with antifungal activity encapsulated in ecofriendly nanosystems could be a new and winning strategy to overcome the problem. We prepared nanoencapsules containing the essential oils of Origanum vulgare (OV) and Thymus capitatus (TC) by the nanoprecipitation method. The colloidal suspensions were characterized for size, polydispersity index (PDI), zeta potential, efficiency of encapsulation (EE) and loading capacity (LC). Finally, the essential oil nanosuspensions were assayed against a panel of fourteen fungal strains belonging to the Ascomycota and Basidiomycota phyla. Our results show that the nanosystems containing thyme and oregano essential oils were active against various fungal strains from natural environments and materials. In particular, the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values were two to four times lower than the pure essential oils. The aqueous, ecofriendly essential oil nanosuspensions with broad-spectrum antifungal activity could be a valid alternative to synthetic products, finding interesting applications in the agri-food and environmental fields.


2019 ◽  
Vol 31 (4) ◽  
pp. 528-533 ◽  
Author(s):  
Nagarjuna Reddy Desam ◽  
Abdul Jabbar Al-Rajab ◽  
Mukul Sharma ◽  
Mary Moses Mylabathula ◽  
Ramachandra Reddy Gowkanapalli ◽  
...  

2021 ◽  
pp. 211-217
Author(s):  
Irina Dement'yevna Zykova ◽  
Aleksandr Alekseyevich Efremov

The antiradical properties of essential oils from the inflorescences of Filipendula ulmaria (L). Maxim, herbages Hypericum perforatum L. and Pulmonaria mollis Wulfen ex HORNEM., growing on the territory of the Krasnoyarsk territory were studied. For this purpose, the reaction of essential oil components with a stable free 2,2-diphenyl-1-picrylhydrazyl radical was used. Essential oil of the plants under study received comprehensive hydroponically. The component composition of the oils was determined by chromatography-mass spectrometry. The main components of essential oil of F. ulmaria inflorescences are methyl salicylate (28.2%), salicylic aldehyde (2.8 %) and linalool (4.9%), essential oil of H. perforatum – γ - amorphene (30.7%), δ-cadinen (7.1%), (E, E)-β-farnesene (5.5%), caryophyllene (5.0%), ledol (5.0%), essential oil of P. mollis – di-n-butyl phthalate (18.7%), docosan (13.4%), tetracosan (11.6 %). The results of the DPPH test showed that the essential oils of the inflorescences of F. ulmaria and the aboveground part of H. perforatum and P. mollis exhibit antiradical activity (ARA). According to the size of the ARA of essential oils, the studied plants can be arranged in the following row: P. mollis > F. ulmaria > H. perforatum.


2017 ◽  
pp. 201-207 ◽  
Author(s):  
Dragana Plavsic ◽  
Gordana Dimic ◽  
Djordje Psodorov ◽  
Dragan Psodorov ◽  
Ljubisa Saric ◽  
...  

Aromatic plants are one of the most important sources of biologically active secondary metabolites, which possess various antimicrobial characteristics. The aim of this work was to examine the effect of antifungal activities of mint and caraway essential oils against the selected fungi. Eight species of molds were selected for antifungal testing: Alternaria alternata, Aspegillus flavus, A. niger, A. versicolor, Eurotium herbariorum, Penicillium aurantiogriseum, P. chrysogenum and P. expansum. Testing of essential oils antifungal activity against the selected species was conducted using the disc diffusion method by adding mint and caraway essential oils (0.5, 1, 5, and 10 ?l per disc). Antifungal activity of essential oils was expressed by the diameter of inhibition zone (mm). The most powerful effect of mint essential oil was recorded against E. herbariorum, as its growth was completely inhibited by the quantity of 5 ?l. The weakest inhibitory effect was observed against P. chrysogenum (inhibition zone 13.67 mm) by the quantity of 10 ?l. The most powerful antifungal activity of caraway was observed against E. herbariorum as growth was completely inhibited by the quantity of 10 ?l. The weakest inhibitory effect was observed against A. niger (inhibition zone 28 mm) by the quantity of 10 ?l.


2020 ◽  
Vol 15 (1) ◽  
pp. 511-521 ◽  
Author(s):  
Soňa Felšöciová ◽  
Nenad Vukovic ◽  
Paweł Jeżowski ◽  
Miroslava Kačániová

AbstractPhytopathogenic fungi have been responsible for considerable economic losses in vineyards, and therefore, more attention should be paid to the development and implementation of preventative treatment that is environmentally friendly. The aim of this study was to evaluate the antifungal activity of ten essential oils (EOs) (viz. Lavandula angustifolia Mill., Carum carvi L., Pinus mugo var. pumilio, Mentha piperita L., Foeniculum vulgare L., Pinus sylvestris L., Satureja hortensis L., Origanum vulgare L., Pimpinella anisum L. and Rosmarinus officinalis L.). For the antifungal activity evaluation against Penicillium brevicompactum, P. citrinum, P. crustosum, P. expansum, P. funiculosum, P. glabrum, P. chrysogenum, P. oxalicum, P. polonicum and Talaromyces purpurogenus a disc diffusion method was used. The ten EOs exhibited different antifungal properties. Three tested EOs (Carum carvi L., Satureja hortensis L. and Pimpinella anisum L.) at concentrations of 0.75, 0.50, 0.25 and 0.125 µL/mL showed antifungal activity, inhibiting the mycelial growth. The Origanum vulgare L. EOs exhibited a lower level of inhibition. Overall, Lavandula angustifolia Mill., Pinus mugo var. pumilio, Mentha piperita L., Foeniculum vulgare L., Pinus sylvestris L., Satureja hortensis L., Pimpinella anisum L. and Rosmarinus officinalis L. were effective as fungicidal agents but their efficiency varied between the strains of fungi. Carum carvi L. showed strong antifungal activity against all tested strains at both full strength and reduced concentrations. These EOs could be considered as potential sources of antifungal compounds for treating plant fungal diseases.


2020 ◽  
Vol 32 (3) ◽  
pp. 167
Author(s):  
Bernadya Yogatri Anjuwita ◽  
Iskandar Zulkarnain ◽  
Muhammad Yulianto Listiawan ◽  
Evy Ervianti ◽  
Rahmadewi Rahmadewi ◽  
...  

Background: Oral candidiasis is caused by the mycotic activity of Candida albicans present in the oral cavity, and it is one of the most common opportunistic infections found in patients with Human Immunodeficiency Virus (HIV)/acquired immune deficiency syndrome (AIDS). The growing resistance and side effects to common antifungal drugs have promoted herbal essential oils as antifungal agents in recent years. In this study, essential oils (EO) of Rosmarinus officinalis (Lamiaceae) were examined for in vitro antifungal activ­ity against Candida species. Purpose: To evaluate the antifungal activity of essential oils of Rosmarinus officinalis (Lamiaceae) and nystatin using the microdilution technique by determining the minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) of Candida spesies. Methods: This was an experimental laboratory study with a post-test-only design conducted in Dr. Soetomo General Academic Teaching Hospital, Surabaya. Forty isolates consisted of twenty isolates of Candida albicans and twenty isolates of Candida non-albicans were collected. The isolates were tested for antifungal activity using the microdilution on 96-well plates. Result: There was a significant difference from the results of the MIC concentration of rosemary essential 100% to 6.25% microdilution method between nystatin and rosemary essential oil (p < 0.05). Conclusion: The antifungal activity of rosemary essential oil was better than nystatin that the lowest MIC value, which was 6.25%, has been obtained the microdilution method. The minimum fungicidal concentration of rosemary essential oil was 25%, while the minimum fungicidal concentration nystatin was higher than 100%.


Author(s):  
Yamina Ben Miri ◽  
Aldjia Taoudiat ◽  
Mohamed Mahdid

The aim of the study was to determine the phenolic and flavonoid content of essential oils (EOs), chloroform and ethanolic extracts of 12 Algerian Thymus species and evaluate their antioxidant and antifungal activities. EOs (1.73 ± 0.30–15.00 ± 1.24 μg/mg), chloroform extracts (33.8 ± 2.42–160.93 ± 3.88 μg/mg) and ethanol extracts (27.01 ± 3.56 –148.46 ± 4.40 μg/mg) showed considerable phenolic content. Flavonoids values of chloroform extracts ranged between 3.39± 0.17 and 20.27 ± 0.29 μg/ml while ethanolic extracts values ranged between 2.81 ± 0.11 and 26.64 ± 0.18 μg/mg. Results of DPPH showed that EOs, chloroform and ethanolic extracts exhibited strong radical scavenging activity (IC50 = 21.75 ± 6.54–338.22 ± 2.99 μg/ml, 22.91 ± 5.59–90.93 ± 1.36 μg/ml, and 33.51 ± 5.72–103.80 ± 4.54 μg/ml, respectively). Inhibition of β-carotene bleaching was potentially performed by all EOs (66.48 ± 2.41–94.06 ± 2.68 %), chloroform extracts (68.98± 1.58–95.30± 1.99%), and ethanolic extracts (62.15 ± 2.51–92.36± 1.15%). The antifungal activity of EOs and extracts was tested using the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC). The EOs (0.1 ± 0.00 mg/ mL – 1.06 ± 0.46 mg/mL), chloroform (0.1 ± 0.00 mg/ mL –1.06 ± 0.46 mg/mL) and ethanol (0.1 ± 0.00 mg /mL–1.6 ± 0.00 mg/mL) showed remarkable antifungal activity against mycotoxigenic Aspergillus genera. The MFC of EOs (1.0 ± 0.34 mg/mL and > 4.8 mg/mL) , chloroform (0.26 ± 0.11 mg/mL and > 1.6 mg/mL) and ethanol (0.2 ± 0.00 mg/mL and > 1.6 mg/mL) were fungicidal in nature higher than MICs. The findings of the study indicated that Thymus spp. EOs and extracts could be used as natural alternatives for food industry.


Sign in / Sign up

Export Citation Format

Share Document