scholarly journals A study of cordierite ceramics synthesis from serpentine tailing and kaolin tailing

2012 ◽  
Vol 44 (2) ◽  
pp. 129-134 ◽  
Author(s):  
P. Zhu ◽  
L.Y. Wang ◽  
D. Hong ◽  
M. Zhou

Cordierite ceramics was synthesized using a composition prepared by the mixture of three different materials: waste serpentine mine tailing (WST), waste kaolin mine tailing (WKT) and alumina. The formation of cordierite was achieved with the solid-state sintering reactions at 1350?C for 3 h. The synthesized cordierite ceramics was characterized by X-ray diffractometer (XRD), thermal analysis (TG-DTA), and SEM-EDS (Scanning Electron Microscopy-Energy Dispersive Spectrometer). The XRD analysis results showed the cordierite with typical rhombic system as a major phase, and its compositions consisted of O, Al, Si and Mg by means of SEM-EDS.

2019 ◽  
Vol 966 ◽  
pp. 249-256 ◽  
Author(s):  
Agung Imaduddin ◽  
Samsulludin ◽  
Muhammad Reza Wicaksono ◽  
Iman Saefuloh ◽  
Satrio Herbirowo ◽  
...  

MgB2 superconductor is a superconductor with a critical temperature of around 39K and has the potential to replace Nb3Sn and NbTi as superconducting coils to produce high magnetic fields. In this study, monofilament wires have been made to analyze the doping effect of SiC and Carbon Nanotubes (CNT) in its manufacture using Powder-In-Tube (PIT) method. Stainless Steel (SS-316) tube was used as a tube filled with powders of starting materials of Mg, B, SiC and CNT. A total of 8 samples were prepared with variations in the addition of SiC, and CNT as much as 5, 10, and 15 wt %, and also the variations in the addition of Mg composition by 0 and 10 mol % from normal stoichiometric values. The samples were rolled and sintered at 800°C for 3 hours. The samples then were analyzed using SEM (Scanning Electron Microscopy) to analyze the surface morphology, XRD (X-Ray Diffractometer) to analyze the formed phases and crystal structures, and then resistivity versus temperature using cryogenic systems to analyze their superconductivity properties. Based on the results of the XRD analysis, the MgB2 phase is the major phase in the samples and the SiC doping causes the formation of minor phases of Mg2Si and Fe3C. The addition of SiC causes a decrease in crystalline properties of the MgB2 phase due to reaction with SiC, while the addition of CNT does not cause the formation of a new phase. Based on the results of the analysis of resistance versus temperature, it is seen that the addition of SiC causes a decrease in TC value. While the addition of CNT causes the improvement in the nature of superconductivity, but it also causes the decrease of its TC values.


Minerals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 533 ◽  
Author(s):  
Xin Zhang ◽  
Guanghui Li ◽  
Jinxiang You ◽  
Jian Wang ◽  
Jun Luo ◽  
...  

Ludwigite ore is a typical low-grade boron ore accounting for 58.5% boron resource of China, which is mainly composed of magnetite, lizardite and szaibelyite. During soda-ash roasting of ludwigite ore, the presence of lizardite hinders the selective activation of boron. In this work, lizardite and szaibelyite were prepared and their soda-ash roasting behaviors were investigated using thermogravimetric-differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microscope and energy dispersive spectrometer (SEM-EDS) analyses, in order to shed light on the soda-ash activation of boron within ludwigite ore. Thermodynamics of Na2CO3-MgSiO3-Mg2SiO4-Mg2B2O5 via FactSage show that the formation of Na2MgSiO4 was preferential for the reaction between Na2CO3 and MgSiO3/Mg2SiO4. While, regarding the reaction between Na2CO3 and Mg2B2O5, the formation of NaBO2 was foremost. Raising temperature was beneficial for the soda-ash roasting of lizardite and szaibelyite. At a temperature lower than the melting of sodium carbonate (851 °C), the soda-ash roasting of szaibelyite was faster than that of lizardite. Moreover, the melting of sodium carbonate accelerated the reaction between lizardite with sodium carbonate.


Chemija ◽  
2019 ◽  
Vol 30 (2) ◽  
Author(s):  
Andrius Laurikėnas ◽  
Fatma Yalçin ◽  
Robertas Žilinskas ◽  
Ayse Uztetik Morkan ◽  
Albinas Žilinskas ◽  
...  

The solvothermal synthesis between Me(NO3)x ∙ yH2O (Mex+ = Fe3+, Ni2+, Mn2+, Co2+, Cu2+) and respectively 4-nitrosalycilic (4NSA) and 5-sulfosalicylic (5SSA) acids produced hybrid organic-inorganic compounds composed of Mex+ ions and organic fragments which include three different functional groups, carboxylic, hydroxyl and sulfonic, each coordinated to the Mex+ ions. The phase and chemical composition, microstructure and properties of Me2(H2O)4(5SSA)3·DMF and Me2(H2O)4(4NSA)2·DMF (DMF – dimethylformamide) hybrid compounds were evaluated and discussed. The synthesised materials were characterised by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR) spectroscopy. The catalytic properties of the obtained compounds were also investigated.


2013 ◽  
Vol 448-453 ◽  
pp. 3041-3045
Author(s):  
Fei Bi ◽  
Xiang Ting Dong ◽  
Jin Xian Wang ◽  
Gui Xia Liu ◽  
Wen Sheng Yu

PVP/[Y(NO3)3+Al (NO3)3] composite nanobelts were fabricated via electrospinning combined with sol-gel process and novel structure of Y3Al5O12(denoted as YAG for short) nanobelts have been obtained after calcination of the relevant composite nanobelts. The structural properties were characterized by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). XRD analysis indicated that the composite nanobelts were amorphous, and YAG nanobelts were cubic in structure with space group Ia3d. FTIR analysis manifested that pure YAG nanobelts were formed at 900oC. SEM analysis and histograms revealed that the width of the composite nanobelts and YAG nanobelts were 3.5 μm and 2.4 μm, and the thickness were 240 nm and 112 nm, respectively, under the 95% confidence level. The formation mechanism of YAG nanobelts was discussed in detail.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Hassan Ilyas ◽  
Ishtiaq A. Qazi ◽  
Wasim Asgar ◽  
M. Ali Awan ◽  
Zahir-ud-din Khan

Pure and Ag-TiO2nanoparticles were synthesized, with the metallic doping being done using the Liquid Impregnation (LI) method. The resulting nanoparticles were characterized by analytical methods such as scanning electron micrographs (SEMs), Energy Dispersive Spectroscopy (EDS), and X-ray diffraction (XRD). XRD analysis indicated that the crystallite size ofTiO2was 27 nm to 42 nm while the crystallite size of Ag-TiO2was 11.27 nm to 42.52 nm. The photocatalytic activity of pureTiO2and silver dopedTiO2was tested by photocatalytic degradation ofp-nitrophenol as a model compound. Ag-TiO2nanoparticles exhibited better results (98% degradation) as compared to pureTiO2nanoparticles (83% degradation) in 1 hour for the degradation ofp-nitrophenol. Ag-TiO2was further used for the photocatalytic degradation of 2,4-dichlorphenol (99% degradation), 2,5-dichlorophenol (98% degradation), and 2,4,6-trichlorophenol (96% degradation) in 1 hour. The degree of mineralization was tested by TOC experiment indicating that 2,4-DCP was completely mineralized, while 2,5-DCP was mineralized upto 95 percent and 2,4,6-TCP upto 86 percent within a period of 2 hours.


2019 ◽  
Vol 26 (04) ◽  
pp. 1850177 ◽  
Author(s):  
YINQIAO PENG ◽  
JICHENG ZHOU ◽  
GUIBIN LEI ◽  
YUANJU GAN ◽  
YUEFENG CHEN

Hydrogenated silicon carbonitride (SiCN:H) thin films were deposited by sputtering of silicon carbide target in hydrogen-doped argon and nitrogen atmospheres. The properties of the SiCN:H films were analyzed by scanning electron microscopy with energy dispersive spectrometer, atomic force microscope, Fourier transform infrared spectroscopy, X-ray diffraction and fluorescence spectrophotometer. No distinct crystal was formed in the SiCN:H films as-deposited and annealed at 600∘C and 800∘C. The SiCN:H films were mainly composed of Si–N, Si–C, Si–O, C–C, C–N, C[Formula: see text]N, N–Hn bonds and SiCxNy network structure. The strong blue photoluminescence observed from the SiCN:H film annealed at 600∘C was attributed to SiCxNy network structure.


2021 ◽  
Vol 1020 ◽  
pp. 8-12
Author(s):  
Wu Hu ◽  
Ke Zhu ◽  
Meng Wang ◽  
Wei Dong Huang ◽  
Jian Min Zeng

Linear segregation of high strength aluminum alloy ZL205A castings were studied by X-ray Nondestructive testing, scanning electron microscope and energy dispersive spectrometer. It is found that the linear segregation occurs at the large wall thickness of the casting and/or at the place where the wall thickness is in transition. Segregation element is mainly Cu, which exists as compound θ (Al2Cu) phase. The formation of linear segregation is related to the flow of Cu-rich melt in the late solidification period, while the occurrence of thermal cracks promotes the formation of linear segregation. The formation of linear segregation of the casting can be effectively prevented by eliminating hot spots of the casting, refining crystal grains and increasing solidification speed of the casting.


2012 ◽  
Vol 624 ◽  
pp. 47-50
Author(s):  
Shi Lei Zhang ◽  
Ben Niu ◽  
Enlei Qi ◽  
Lei Wang ◽  
Jie Qiang Wang

In this paper, KMnO4 was used as raw material, nano-MnO2 with different morphologies such as flowers globular, hollow tubular and rodlike were obtained by the microwave assisted hydrothermal synthesis under the acidic condition. The crystal structure and morphology of the resultant MnO2 were characterized by X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM), respectively. The elements and content of samples were tested by Energy Dispersive Spectrometer (EDS). The influence of reaction temperature and holding time on crystal forms and morphologies of the MnO2 was analyzed.


2017 ◽  
Vol 17 (01n02) ◽  
pp. 1760015 ◽  
Author(s):  
Anju Anna Jacob ◽  
L. Balakrishnan ◽  
S. R. Meher ◽  
K. Shambavi ◽  
Z. C. Alex

Zinc oxide (ZnO) is a wide bandgap semiconductor with excellent photoresponse in ultra-violet (UV) regime. Tuning the bandgap of ZnO by alloying with cadmium can shift its absorption cutoff wavelength from UV to visible (Vis) region. Our work aims at synthesis of Zn[Formula: see text]CdxO nanoparticles by co-precipitation method for the fabrication of photodetector. The properties of nanoparticles were analyzed using X-ray diffractometer, UV–Vis spectrometer, scanning electron microscope and energy dispersive spectrometer. The incorporation of cadmium without altering the wurtzite structure resulted in the red shift in the absorption edge of ZnO. Further, the photoresponse characteristics of Zn[Formula: see text]CdxO nanopowders were investigated by fabricating photodetectors. It has been found that with Cd alloying the photosensitivity was increased in the UVA-violet as well in the blue region.


2019 ◽  
Vol 969 ◽  
pp. 169-174
Author(s):  
R. Sivanand ◽  
S. Chellammal ◽  
S. Manivannan

In this paper, the effect of size variation of cadmium sulphide nanocrystallites which have been prepared by precipitation method is analyzed. These prepared samples were studied using X-ray diffraction (XRD), Scanning electron microscopy (SEM), and Energy dispersive analysis of spectroscopy (EDAX) techniques. SEM analysis represents the morphological nature of prepared samples and EDAX indicates the confirmation of elements present in the sample. XRD analysis determines the size of the samples and identifies the structure using miller indices (h k l values) of the nanocrystallies matches with JCPDS. From the XRD analysis, the size variation which depends on dopant, capping agent are discussed and corresponding results are reported in this paper.


Sign in / Sign up

Export Citation Format

Share Document