scholarly journals Organobentonite: Characterization and adsorptive properties towards phenol and its derivatives

2016 ◽  
Vol 48 (2) ◽  
pp. 167-176
Author(s):  
Sanja Marinovic ◽  
Marija Ajdukovic ◽  
Natasa Jovic-Jovicic ◽  
Predrag Bankovic ◽  
Zorica Mojovic ◽  
...  

Bentonite from Mecji Do locality in Serbia was modified with hexadecyltrimethylammonium bromide (HDTMA-Br), and the sample was denoted as HDTMA-MD. The characterization of the material included X-Ray diffraction, elemental analysis and point of zero charge determination. The adsorption of phenol and its nitro derivatives: 2-nitrophenol (2NP), 3-nitrophenol (3NP) and 4-nitrophenol (4NP) on HDTMA-MD was investigated. The adsorption capacity of HDTMA-MD toward phenol derivatives increased in the following order qe (phenol) < qe (3NP) < qe (2NP) < qe (4NP). The influence of adsorption time and initial concentration on the adsorption efficiency of HDTMA-MD was studied for 4NP. The data were best fitted with Langmuir isotherm model and the pseudo-second-order kinetic model.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Prasanna Kumarathilaka ◽  
Vimukthi Jayaweera ◽  
Hasintha Wijesekara ◽  
I. R. M. Kottegoda ◽  
S. R. D. Rosa ◽  
...  

Embedding nanoparticles into an inert material like graphene is a viable option since hybrid materials are more capable than those based on pure nanoparticulates for the removal of toxic pollutants. This study reports for the first time on Cr(VI) removal capacity of novel starch stabilized nanozero valent iron-graphene composite (NZVI-Gn) under different pHs, contact time, and initial concentrations. Starch coated NZVI-Gn composite was developed through borohydrate reduction method. The structure and surface of the composite were characterized by scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), and point of zero charge (pHpzc). The surface area and pHpzc of NZVI-Gn composite were reported as 525 m2 g−1 and 8.5, respectively. Highest Cr(VI) removal was achieved at pH 3, whereas 67.3% was removed within first few minutes and reached its equilibrium within 20 min obeying pseudo-second-order kinetic model, suggesting chemisorption as the rate limiting process. The partitioning of Cr(VI) at equilibrium is perfectly matched with Langmuir isotherm and maximum adsorption capacity of the NZVI-Gn composite is 143.28 mg g−1. Overall, these findings indicated that NZVI-Gn composite could be utilized as an efficient and magnetically separable adsorbent for removal of Cr(VI).


Author(s):  
Yan Sun ◽  
Xiaojun Song ◽  
Jing Ma ◽  
Haochen Yu ◽  
Gangjun Liu ◽  
...  

The polyacrylonitrile/fly ash composite was synthesized through solution polymerization and was modified with NH2OH·HCl. The amidoxime-modified polyacrylonitrile/fly ash composite demonstrated excellent adsorption capacity for Zn2+ in an aqueous medium. Fourier transform-Infrared spectroscopy, thermogravimetric analysis, nitrogen adsorption, X-ray diffraction, and scanning electron microscopy were used to characterize the prepared materials. The results showed that the resulting amidoxime-modified polyacrylonitrile/fly ash composite was able to effectively remove Zn2+ at pH 4–6. Adsorption of Zn2+ was hindered by the coexisting cations. The adsorption kinetics of Zn2+ by Zn2+ followed the pseudo-second order kinetic model. The adsorption process also satisfactorily fit the Langmuir model, and the adsorption process was mainly single layer. The Gibbs free energy ΔG0, ΔH0, and ΔS0 were negative, indicating the adsorption was a spontaneous, exothermic, and high degree of order in solution system.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1816
Author(s):  
Minghui Wang ◽  
Tao Chen ◽  
Bo Yan ◽  
Lili Li ◽  
Damao Xu ◽  
...  

The adsorption of Cu (II) onto two typical types of pyrolytic sludge was investigated in this study. The examined conditions include pH, adsorption time, and temperature, as well as the dosage of adsorbents. Results show that the adsorbents removed the Cu (II) effectively. The adsorbent made from pyrolyzed paper mill sludge (CuMS) exhibited exceptional performance, with a removal efficiency of around 100%. Moreover, the adsorption of Cu (II) onto CuMS was not affected by pH in the range of 3–9. The kinetic data showed better conformation with the pseudo-second-order kinetic model, and the adsorption processes of the CuMS fit well to the Langmuir isotherm model. The adsorption capacity reached 4.90 mg·g−1 under appropriate conditions. Microscopic analysis and FT-IR analysis revealed that the adsorbent with porous structure and high monosilicate content was beneficial to Cu (II) adsorption. Thus, the CuMS is a potentially promising candidate for retaining Cu (II) in aqueous environments.


2019 ◽  
Vol 20 (22) ◽  
pp. 5612 ◽  
Author(s):  
Asma Hamedi ◽  
Francesco Trotta ◽  
Mahmood Borhani Zarandi ◽  
Marco Zanetti ◽  
Fabrizio Caldera ◽  
...  

A new magnetic nanocomposite called MIL-100(Fe) @Fe3O4@AC was synthesized by the hydrothermal method as a stable adsorbent for the removal of Rhodamine B (RhB) dye from aqueous medium. In this work, in order to increase the carbon uptake capacity, magnetic carbon was first synthesized and then the Fe3O4 was used as the iron (III) supplier to synthesize MIL-100(Fe). The size of these nanocomposite is about 30–50 nm. Compared with activated charcoal (AC) and magnetic activated charcoal (Fe3O4@AC) nanoparticles, the surface area of MIL-100(Fe) @Fe3O4@AC were eminently increased while the magnetic property of this adsorbent was decreased. The surface area of AC, Fe3O4@AC, and MIL-100(Fe) @Fe3O4@AC was 121, 351, and 620 m2/g, respectively. The magnetic and thermal property, chemical structure, and morphology of the MIL-100(Fe) @Fe3O4@AC were considered by vibrating sample magnetometer (VSM), thermogravimetric analysis (TGA), zeta potential, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Brunner-Emmet-Teller (BET), and transmission electron microscopy (TEM) analyses. The relatively high adsorption capacity was obtained at about 769.23 mg/g compared to other adsorbents to eliminate RhB dye from the aqueous solution within 40 min. Studies of adsorption kinetics and isotherms showed that RhB adsorption conformed the Langmuir isotherm model and the pseudo second-order kinetic model. Thermodynamic amounts depicted that the RhB adsorption was spontaneous and exothermic process. In addition, the obtained nanocomposite exhibited good reusability after several cycles. All experimental results showed that MIL-100(Fe) @Fe3O4@AC could be a prospective sorbent for the treatment of dye wastewater.


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 626 ◽  
Author(s):  
Salah ◽  
Gaber ◽  
Kandil

The sorption of uranium and thorium from their aqueous solutions by using 8-hydroxyquinoline modified Na-bentonite (HQ-bentonite) was investigated by the batch technique. Na-bentonite and HQ-bentonite were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared (FTIR) spectroscopy. Factors that influence the sorption of uranium and thorium onto HQ-bentonite such as solution pH, contact time, initial metal ions concentration, HQ-bentonite mass, and temperature were tested. Sorption experiments were expressed by Freundlich and Langmuir isotherms and the sorption results demonstrated that the sorption of uranium and thorium onto HQ-bentonite correlated better with the Langmuir isotherm than the Freundlich isotherm. Kinetics studies showed that the sorption followed the pseudo-second-order kinetic model. Thermodynamic parameters such as ΔH°, ΔS°, and ΔG° indicated that the sorption of uranium and thorium onto HQ-bentonite was endothermic, feasible, spontaneous, and physical in nature. The maximum adsorption capacities of HQ-bentonite were calculated from the Langmuir isotherm at 303 K and were found to be 63.90 and 65.44 for U(VI) and Th(IV) metal ions, respectively.


Author(s):  
Yanchang Zhang ◽  
Lin Zhao ◽  
Yongkui Yang ◽  
Peizhe Sun

Biochar (BC)-supported nanoscale zero-valent iron (nZVI-BC) was investigated as a heterogeneous Fenton-like activator to degrade the antibiotic ornidazole (ONZ). The characterization of nZVI-BC indicated that BC could enhance the adsorption of ONZ and reduce the aggregation of nZVI. Thus, nZVI-BC had a higher removal efficiency (80.1%) than nZVI and BC. The effects of parameters such as the nZVI/BC mass ratio, pH, H2O2 concentration, nZVI-BC dose, and temperature were systematically investigated, and the removal of ONZ followed a pseudo-second-order kinetic model. Finally, possible pathways of ONZ in the oxidation process were proposed. The removal mechanism included the adsorption of ONZ onto the surface of nZVI-BC, the generation of •OH by the reaction of nZVI with H2O2, and the oxidation of ONZ. Recycling experiments indicated that the nZVI-BC/H2O2 system is a promising alternative for the treatment of wastewater containing ONZ.


2009 ◽  
Vol 610-613 ◽  
pp. 65-68 ◽  
Author(s):  
Xue Gang Luo ◽  
Feng Liu ◽  
Xiao Yan Lin

Konjac glucomannan (KGM) was converted into water insoluble konjac glucomannan (WIKGM) by treating with NaOH through completely deacetylated reaction. Adsorption study was carried out for the adsorption of Pb2+ from aqueous solution using water insoluble konjac glucomannan. The influences of pH, contact time, temperature and initial Pb2+ concentration on the absorbent were studied. Results of kinetic data showed that the Pb2+ adsorption rate was fast and good correlation coefficients were obtained for the pseudo second-order kinetic model. The equilibrium process was described well by the Langmuir isotherm model with maximum adsorption capacity of 9.18 mg/g on WIKGM at 25°C.


2018 ◽  
Vol 5 (3) ◽  
pp. 171927 ◽  
Author(s):  
Yong Fu ◽  
Yue Huang ◽  
Jianshe Hu

A novel functional hybrid mesoporous composite material (CMP) based on chitosan and MCM-41-PAA was reported and its application as an excellent adsorbent for Hg(II) ions was also investigated. Innovatively, MCM-41-PAA was prepared by using diatomite and polyacrylic acid (PAA) with integrated polymer–silica hybrid frameworks, and then CMP was fabricated by introducing MCM-41-PAA to chitosan using glutaraldehyde as a cross-linking agent. The structure and morphology of CMP were characterized by X-ray diffraction, Fourier transform infrared spectra, thermogravimetric analysis, scanning electron microscopy and Brunauer–Emmett–Teller measurements. The results showed that the CMP possessed multifunctional groups such as –OH, –COOH and –NH 2 with large specific surface area. Adsorption behaviour of Hg(II) ions onto CMP was fitted better by the pseudo-second-order kinetic model and the Langmuir model when the initial Hg(II) concentration, pH, adsorption temperature and time were 200 mg l −1 , 4, 298 K and 120 min, respectively, as the optimum conditions. The corresponding maximum adsorption capacity could reach 164 mg g −1 . According to the thermodynamic parameters determined such as free energy, enthalpy and entropy, the adsorption process of Hg(II) ions was spontaneous endothermic adsorption.


Clay Minerals ◽  
2012 ◽  
Vol 47 (1) ◽  
pp. 31-44 ◽  
Author(s):  
G. A. Ikhtiyarova ◽  
A. S. Özcan ◽  
Ö. Gök ◽  
A. Özcan

AbstractIn this study, natural bentonite was modified with hexadecyltrimethylammonium (HDTMA) bromide to obtain organobentonite (HDTMA-bentonite). Bentonite and HDTMA-bentonite were then characterized using XRD, XRF, SEM, FT-IR, thermogravimetric (TG) analysis, elemental analysis and Brunauer-Emmett-Teller (BET) surface area techniques. The HDTMA+ cation was found to be located on the surface and enters the interlayer spaces of smectite according to the XRD and SEM results. FT-IR spectra indicated the existence of HDTMA functional groups on the bentonite surface. The BET surface area significantly decreased after the modification due to the coverage of the pores of natural bentonite. After the characterization, the adsorption of a textile dye, Reactive Blue 19 (RB19), onto bentonite and HDTMA-bentonite was investigated. The maximum adsorption capacity of HDTMA-bentonite for RB19 was 502 mg g-1 at 20°C. The adsorption process followed a pseudo-second-order kinetic model and it was exothermic and physical in nature.


2017 ◽  
Vol 76 (6) ◽  
pp. 1565-1573 ◽  
Author(s):  
Jun Liu ◽  
Siying Xia ◽  
Xiaomeng Lü ◽  
Hongxiang Shen

Phosphorus flame retardant tricresyl phosphate (TCP) adsorption on graphene nanomaterials from aqueous solutions was explored using batch and column modes. Comparative studies were performed regarding the kinetics and equilibrium of TCP adsorption on graphene oxide (GO) and graphene (G) in batch mode. The adsorption kinetics exhibited a rapid TCP uptake, and experimental data were well described by the pseudo-second-order kinetic model. Adsorption isotherm data of TCP on the two adsorbents displayed an improved TCP removal performance with increasing temperature at pH 5, while experimental data were well described by the Langmuir isotherm model with a maximum adsorption capacity of 87.7 mg·g−1 for G, and 30.7 mg·g−1 for GO) at 303 K. The thermodynamic parameters show that the adsorption reaction is a spontaneous and endothermic process. In addition, dynamic adsorption of TCP in a fixed G column confirmed a faster approach to breakthrough at high flow rate, high influent TCP concentration, and low filling height of adsorbent. Breakthrough data were successfully described by the Thomas and Yoon-Nelson models.


Sign in / Sign up

Export Citation Format

Share Document