scholarly journals Facile preparation of α-Fe2O3 nanobulk via bubble electrospinning and thermal treatment

2016 ◽  
Vol 20 (3) ◽  
pp. 967-972 ◽  
Author(s):  
Peng Liu ◽  
Chun-Hui He ◽  
Fujuan Liu ◽  
Lan Xu ◽  
Yuqin Wan ◽  
...  

In this work, ?-Fe2O3 nanobulk with high aspect ratio were successfully prepared via a facile bubble electrospinning technique using polyvinylidene fluoride and iron chloride hexahydrate (FeCl3?6H2O) as ?-Fe2O3 precursor followed by annealing in air at 600?C. The products were characterized with field emission scanning electron microscope, Fourier transform infrared, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The results showed that ?-Fe2O3 nanobulk has a hierarchical heterostructure which has an extremely broad application prospect in many areas.

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Xiangfeng Chu ◽  
Junsong Liu ◽  
Shiming Liang ◽  
Linshan Bai ◽  
Yongping Dong ◽  
...  

In this paper, g-C3N4-WO3 composite materials were prepared by hydrothermal processing. The composites were characterized by means of X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and N2 adsorption-desorption, respectively. The gas sensing properties of the composites were investigated. The results indicated that the addition of appropriate amount of g-C3N4 to WO3 could improve the response and selectivity to acetone. The sensor based on 2 wt% g-C3N4-WO3 composite showed the best gas sensing performances. When operating at optimum temperature of 310°C, the responses to 1000 ppm and 0.5 ppm acetone were 58.2 and 1.6, respectively, and the ratio of the S1000 ppm acetone to S1000 ppm ethanol reached 3.7.


2020 ◽  
Vol 2 (2) ◽  
pp. 205-209

The present study reports the successful synthesis of nickel oxide nanoparticles using Vernonia amygdalina plant leaf extracts as a chelating agent and nickel (II) chloride hexahydrate (NiCl2•6H2O) as precursor. The synthesized powder was gray black in color and annealed at 500 °C for 2 hours to obtain nickel oxide nanoparticles. Characterization techniques such as powder X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy were used to study the structure and morphology of the nanoparticles. Powder X-ray diffraction patterns revealed that nickel oxide nanoparticles with an average crystallite size of 17.86nm were synthesized. Scanning electron microscope images show that the nanoparticles have octahedral structure. Fourier transform infrared spectrophotometer analysis revealed that the strongest bond at 1094.8cm-1 corresponds to stretching vibration mode of Ni-O nanoparticles.


2021 ◽  
Vol 270 ◽  
pp. 01011
Author(s):  
Tereza Smejkalová ◽  
Ştefan Ţălu ◽  
Rashid Dallaev ◽  
Klára Částková ◽  
Dinara Sobola ◽  
...  

Polyvinylidene fluoride (PVDF) is one of the most promising electroactive polymers; it exhibits excellent electroactive behaviours, good biocompatibility, excellent chemical resistance, and thermal stability, rendering it an attractive material for biomedical, electronic, environmental and energy harvesting applications. This work aims to further improve its properties by the inclusion of powders of piezoactive materials. Polyvinylidene fluoride was formed by electrospinning into fibres with a thickness of 1.5-0.3 µm and then examined in a scanning electron microscope. The work offers a description of the current procedure in the preparation of samples and their modification for examination in a scanning electron microscope, characterizes the individual components of doped fibres and deals with specific instruments used for various analytical methods. The work contains a theoretical introduction to the analytical methods to which the samples will be further subjected, such as energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS). The obtained excellent properties of doped PVDF could be used in the design of sensors.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (01) ◽  
pp. 21-27 ◽  
Author(s):  
Xueqing Qiu ◽  
Yingzhi Ma ◽  
Dafeng Zheng

A magnetic lignin-based nanomaterial (MLN) was prepared from alkaline lignin through an amination and precipitation strategy and characterized with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TG), Brunauer-Emmett-Teller (BET) method, scanning electron microscope (SEM), dynamic light scattering (DLS), and vibrating sample magnetometer (VSM). The results illustrated that MLN was thermostable and had an extensive degree of aminated lignin coating. The specific surface area of MLN was 65.43 m2/g, with the total pore volume of 0.311 cm3/g. The zeta potential of MLN was positive when pH was less than 2.9, and the saturation magnetization was 50.8 emu/g. The characterization data discovered that the physico-chemical properties of MLN were helpful for the adsorption application.


2021 ◽  
Author(s):  
SongSik Pak ◽  
KwangChol Ri ◽  
Chenmin Xu ◽  
Qiuyi Ji ◽  
Dunyu Sun ◽  
...  

The g-C3N4/Y-TiO2 Z-scheme heterojunction photocatalysts were successfully synthesized. The powder X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscope, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy were used for...


2012 ◽  
Vol 512-515 ◽  
pp. 894-897
Author(s):  
Si Hui Wang ◽  
He Yun Wang ◽  
Fan Xing Meng ◽  
Ya Li Li

Abstract: The introduction of metal atoms into SiBCN network allows the development of novel high temperature ceramics and functional ceramics. In this work, cerium (Ce) containing polyborosilazane (PBSZ) is synthesized through substitution and polymerization reactions. Ce atoms are incorporated into PBSZ through the lithium replacement of H in PBSZ followed by Ce replacement of lithium. The chemical structure of the PBSZ and as-synthesized Li containing PBSZ are analyzed by Fourier transform infrared (FTIR) shows that the bands at 598 and 1183 cm-1 which can be assigned to Li-N and Si-N-Li stretching. It is suggested that lithium is incorporated into PBSZ. PBSZCe is transformed into SiBCNCe ceramic by pyrolysed in argon. Scanning electron microscope shows that the SiBCNCe ceramics are porous on the surface and corallike in the section. The chemical bondings of SiBCNCe ceramics are BN, the BN, SiC and Si3N4 characterized by X-ray photoelectron spectroscopy.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 608
Author(s):  
Thong Le Ba ◽  
Marcell Bohus ◽  
István Endre Lukács ◽  
Somchai Wongwises ◽  
Gyula Gróf ◽  
...  

A comparative research on stability, viscosity (µ), and thermal conductivity (k) of carbon nanosphere (CNS) and carbon nanopowder (CNP) nanofluids was performed. CNS was synthesized by the hydrothermal method, while CNP was provided by the manufacturer. Stable nanofluids at high concentrations 0.5, 1.0, and 1.5 vol% were prepared successfully. The properties of CNS and CNP nanoparticles were analyzed with Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), specific surface area (SBET), X-ray powder diffraction (XRD), thermogravimetry/differential thermal analysis (TG/DTA), and energy dispersive X-ray analysis (EDX). The CNP nanofluids have the highest k enhancement of 10.61% for 1.5 vol% concentration compared to the base fluid, while the CNS does not make the thermal conductivity of nanofluids (knf) significantly higher. The studied nanofluids were Newtonian. The relative µ of CNS and CNP nanofluids was 1.04 and 1.07 at 0.5 vol% concentration and 30 °C. These results can be explained by the different sizes and crystallinity of the used nanoparticles.


2019 ◽  
Vol 268 ◽  
pp. 06016
Author(s):  
Regina G. Damalerio ◽  
Lawrence P. Belo ◽  
Aileen H. Orbecido ◽  
Carla Mae J. Pausta ◽  
Michael Angelo B. Promentilla ◽  
...  

Wastewater and sludge are potential resource of phosphorus (P) for fertilizer production. One method of recovering phosphorus is via chemical precipitation. In the study, phosphorus was recovered from wastewater and sludge. First, hydrolysis was carried out to release the phosphorus in the sludge by the addition of 1.0M acid (sulfuric acid) or base (sodium hydroxide) solution mixed for three hours at 200 rpm. The hydrolyzed sludge was filtered, and the pH of the solution was adjusted to 9.0. Precipitation for both wastewater and hydrolyzed sludge solution was carried out using magnesium chloride hexahydrate (MgCl2•6H2O) and ammonium chloride (NH4Cl). The mixture was stirred for an hour for crystallization. Precipitates were allowed to settle for 24 hours before it was filtered and dried in an oven at 55-58oC for 24 hours. The dried sample was grinded and characterized using Fourier transform infrared spectroscopy (FTIR), x-ray fluorenscence (XRF), and scanning electron microscope with energy-dispersive x-ray spectroscopy(SEM-EDX).


2010 ◽  
Vol 71 ◽  
pp. 22-27 ◽  
Author(s):  
Patrizia Frontera ◽  
Concetta Busacca ◽  
Vincenza Modafferi ◽  
Pierluigi Antonucci ◽  
Massimiliano Lo Faro

. In this work PVA/Sm2O3 composite fibers and Sm2O3 fibers (PVA and Sm(NO3)3 were used as precursors) were prepared by using electrospinning technique. The fibers obtained were characterized by scanning electron microscopy, X-ray diffraction, thermogravimetric analysis and Fourier transform infrared spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document