Optical Stability of High-translucency Resin-based Composites

2019 ◽  
Vol 44 (5) ◽  
pp. 536-544
Author(s):  
YB Piccoli ◽  
VP Lima ◽  
GR Basso ◽  
VE Salgado ◽  
GS Lima ◽  
...  

SUMMARY This study investigated the stability of the optical properties of high-translucent shades of dental resin-based composites. Four commercial materials (Filtek Z350 XT, Opallis, Amelogen Plus, and IPS Empress Direct) and 14 non-Vita shades were tested. Disc-shaped specimens for each resin-based composite-shade combination (n=6) were evaluated at T0 (baseline), T1 (after 30 days of storage in water), and T2 (after 30 days of storage each in water and a coffee solution). Color measurements were performed according to the L′C′h′ color system. Translucency Parameter (TP) and CIEDE2000 color difference (ΔE00) were calculated. Data were statistically analyzed at α = 0.05. Baseline TP values varied from 43 ± 1 to 55 ± 1. Changes in TP at T1 varied from −3.0% (Opallis T-Neutral) to 4.2% (Amelogen Plus Trans Orange), with no major differences from T0. At T2, most resin-based composites showed significantly increased opacity, with changes varying between −15.0% (Empress Direct Trans 20) and −2.7% (Z350 XT Blue). However, the TP values were ≥40 throughout the study. Storage in water caused negligible color differences, with ΔE00 values at T1 ≤ 0.9 ± 0.6. At T2, all materials tested showed significant color difference, and ΔE00 ≥ 3.2 ± 0.2. The orange shades from Opallis and Amelogen Plus showed lower color variation than did the other shades. The most significant optical changes upon storage were detected in the hue and particularly the chroma color coordinate. In conclusion, the high-translucent resin-based composites showed large variability in the stability of their optical properties among the tested brands and different shades of the same material. Regardless of the storage condition, the tested resin-based composites retained their high-translucency character over time.

2021 ◽  
Author(s):  
RG Fonseca ◽  
RC Peńa ◽  
R Simóes ◽  
AC Ramos ◽  
LN Dovigo

SUMMARY Little is known about the impact of bleaching on the optical properties of computer-aided design and computer-aided manufactured (CAD-CAM) monolithic materials. The aim of the present study was to evaluate the effect of one session of in-office bleaching on stain removal, staining susceptibility, translucency, and whiteness variations of CADCAM monolithic materials. Disks were fabricated from Lava Ultimate (LU), Vita Enamic (VE), Vita Suprinity (VS), and IPS e.max CAD (IPS). A spectrophotometer was used to register Commission Internationale de l’Eclairage L*a*b* coordinates. For stain removal, 80 specimens from each material were assessed at baseline (R0) and after immersion in deionized water or coffee for 365 days followed or not by bleaching with 40% hydrogen peroxide (R1). For staining susceptibility, 80 specimens from each material were analyzed at baseline (R0’), and after having been bleached or not and immersed in deionized water or coffee (R1’). Both analyses were calculated as the color difference (ΔE00) between R1-R0 and R1’-R0’, respectively. Differences in translucency (ΔTP00) and whiteness (ΔWID) between R1-R0 and R1’-R0’ were also calculated. Data were analyzed by three-way ANOVA and the Games-Howell post hoc test (α=0.05). Clinical significance was based on 50%:50% perceptibility and acceptability thresholds for ΔE00, ΔTP00 and ΔWID, respectively. Surfaces were analyzed by scanning electron microscopy. Coffee increased ΔE00 in LU, VE, and VS, and decreased their translucency and whiteness, whereas the IPS had only its whiteness affected. Bleaching after immersion in coffee decreased ΔE00 in LU and VE, and increased translucency and whiteness of LU, VE, and VS. No effect was observed on IPS. Bleaching before immersion in coffee decreased translucency of LU, but within the acceptable interval, while VE exhibited lower ΔE00, and became more translucent and less dark. Both VS and IPS were not affected. One session of in-office bleaching benefited optical properties of the previously stained LU, VE, and VS, without increasing their susceptibility to staining or adversely providing clinically unacceptable variations in their translucency and whiteness. All variations exhibited by the IPS were below the perceptible threshold.


2017 ◽  
Vol 8 (6) ◽  
pp. 577-582
Author(s):  
Jana Valauskaitė ◽  
Rimantas Stonkus

An optical properties of the flexographic prints on the shrink sleeve has been experimentally investigated. Two main materials of shrink sleeve: PVC and PET were used for the research. Films were printed using UV flexographic inks. The color changes arised during shrinking of the films were analysed. Investigations were done using CMYK and PANTONE color matching systems. Color characteristics CIE L*a*b* and color difference DE at different shrink level of the film was estimated. It was found that colors become darker during the shrinking of the film. In the case of rasterize image it is related to the deformation of the raster dots, decrease of the spaces between the raster dots and other factors. The biggest changes in the CMYK color system was determined in the Yellow color, while in the tested PANTONE color system – in the blue (P 290) color. The smallest changes in the CMYK color system was determined in the Cyan color, while in the PANTONE color system – in the white color. Eksperimentiškai ištirtos fleksografiniu spaudos būdu atspausdintų atspaudų ant susitraukiančių plėvelių optinės savybės. Tyrimui naudotos dvi pagrindinės susitraukiančioms plėvelėms naudojamos medžiagos: PVC ir PET, užspausdintos ultravioletiniais (UV) dažais. Išnagrinėti spalviniai pokyčiai, atsirandantys plėvelei besitraukiant. Tyrimai atlikti su CMYK ir PANTONE sistemų spalvomis. Nustatytos spalvinės charakteristikos CIE L*a*b* ir spalvų skirtumas DE, plėvelei susitraukiant skirtingai. Nustatyta, kad, plėvelėms besitraukiant, spalvos tamsėja. Rastruotuose vaizduose tai susiję su rastrinių taškelių deformacija, tarpų tarp rastrinių taškelių sumažėjimu ir kitais veiksniais. Didžiausi spalviniai pokyčiai CMYK spalvinėje sistemoje nustatyti Yellow (geltonoje) spalvoje, o tarp tirtų PANTONE sistemos spalvų – mėlynoje (P 290) spalvoje, mažiausi pokyčiai CMYK sistemoje nustatyti Cyan spalvoje, o PANTONE sistemoje – baltoje spalvoje.


1998 ◽  
Vol 123 (4) ◽  
pp. 681-686 ◽  
Author(s):  
L.J. Grauke ◽  
T.E. Thompson ◽  
E.F. Young ◽  
H.D. Petersen

The Munsell color system was used to study kernel color differences between four pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivars (`Cheyenne', `Choctaw', `Western', and `Wichita') grown at four locations (Tulare, Calif., and Brownwood, Crystal City, and El Paso, Texas) during two seasons (1987 and 1988) and stored under different temperatures (20 to 24 °C and -5 °C). Kernel color changed over time from yellow to red hues and from lighter to darker values, but changed very little in chroma. Initial ratings of each color attribute by cultivar were positively correlated with patterns of change in that attribute over time. Kernels collected in 1987 were more yellow and had greater color saturation than kernels collected in 1988. `Cheyenne' kernels were the most yellow of the cultivars tested and `Wichita' kernels were the most red. `Cheyenne' kernels were lighter than those of any other cultivar. Kernels frozen 6 or 12 months were more red in hue than unfrozen kernels, but could not be distinguished on the basis of value (lightness). Kernels frozen 12 months had reduced chroma compared to those frozen 6 months or unfrozen. Shelled kernels of `Wichita' changed hue more in storage than kernels of other cultivars. Shelled kernels held at 20 to 24 °C became darker and developed red coloration quicker than unshelled pecans. Variation in hue and value accounted for the majority of color difference between cultivars. Changes in hue accounted for the majority of color change over time. Differences among cultivars in value (lightness) were consistent over time.


2020 ◽  
Vol 92 (2) ◽  
pp. 20402
Author(s):  
Kaoutar Benthami ◽  
Mai ME. Barakat ◽  
Samir A. Nouh

Nanocomposite (NCP) films of polycarbonate-polybutylene terephthalate (PC-PBT) blend as a host material to Cr2O3 and CdS nanoparticles (NPs) were fabricated by both thermolysis and casting techniques. Samples from the PC-PBT/Cr2O3 and PC-PBT/CdS NCPs were irradiated using different doses (20–110 kGy) of γ radiation. The induced modifications in the optical properties of the γ irradiated NCPs have been studied as a function of γ dose using UV Vis spectroscopy and CIE color difference method. Optical dielectric loss and Tauc's model were used to estimate the optical band gaps of the NCP films and to identify the types of electronic transition. The value of optical band gap energy of PC-PBT/Cr2O3 NCP was reduced from 3.23 to 3.06 upon γ irradiation up to 110 kGy, while it decreased from 4.26 to 4.14 eV for PC-PBT/CdS NCP, indicating the growth of disordered phase in both NCPs. This was accompanied by a rise in the refractive index for both the PC-PBT/Cr2O3 and PC-PBT/CdS NCP films, leading to an enhancement in their isotropic nature. The Cr2O3 NPs were found to be more effective in changing the band gap energy and refractive index due to the presence of excess oxygen atoms that help with the oxygen atoms of the carbonyl group in increasing the chance of covalent bonds formation between the NPs and the PC-PBT blend. Moreover, the color intensity, ΔE has been computed; results show that both the two synthesized NCPs have a response to color alteration by γ irradiation, but the PC-PBT/Cr2O3 has a more response since the values of ΔE achieved a significant color difference >5 which is an acceptable match in commercial reproduction on printing presses. According to the resulting enhancement in the optical characteristics of the developed NCPs, they can be a suitable candidate as activate materials in optoelectronic devices, or shielding sheets for solar cells.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali A. Alhazime ◽  
Nesreen T. El-Shamy ◽  
Kaoutar Benthami ◽  
Mai ME. Barakat ◽  
Samir A. Nouh

AbstractNanocomposite films of polymethylmethacrylate PMMA with Sn0.75Fe0.25S2 nanoparticles (NPs) were fabricated by both thermolysis and casting techniques. Changes in PMMA/Sn0.75Fe0.25S2 nanocomposite (NCP) due to gamma irradiation have been measured. XRD results indicate that the gamma doses of 10–80 kGy cause intermolecular crosslinking that reduces the ordered portion in the NPs. Bonding between the NPs and the host PMMA was confirmed by FTIR. TGA results indicate an enhancement in thermal stability in the NCP films irradiated with doses 20–80 kGy. The optical band gap was reduced from 3.23 to 2.47 eV upon gamma irradiation up to 80 kGy due bonding between the NPs and PMMA which enhanced the amorphous part of the NPs. Finally, the color variation between the blank and irradiated films (ΔE) was determined. Color changes immensely when the PMMA/Sn0.75Fe0.25S2 NCP films are gamma irradiated. Values of ΔE were as much as 31.6 which is an acceptable match in commercial reproduction on printing presses.


2016 ◽  
Vol 73 (14) ◽  
pp. 1088-1092 ◽  
Author(s):  
Michael F. Wempe ◽  
Alan Oldland ◽  
Nancy Stolpman ◽  
Tyree H. Kiser

Abstract Purpose Results of a study to determine the 90-day stability of dronabinol capsules stored under various temperature conditions are reported. Methods High-performance liquid chromatography (HPLC) with ultraviolet (UV) detection was used to assess the stability of dronabinol capsules (synthetic delta-9-tetrahydrocannabinol [Δ9-THC] mixed with high-grade sesame oil and other inactive ingredients and encapsulated as soft gelatin capsules) that were frozen, refrigerated, or kept at room temperature for three months. The dronabinol capsules remained in the original foil-sealed blister packs until preparation for HPLC–UV assessment. The primary endpoint was the percentage of the initial Δ9-THC concentration remaining at multiple designated time points. The secondary aim was to perform forced-degradation studies under acidic conditions to demonstrate that the HPLC–UV method used was stability indicating. Results The appearance of the dronabinol capsules remained unaltered during frozen, cold, or room-temperature storage. Regardless of storage condition, the percentage of the initial Δ9-THC content remaining was greater than 97% for all evaluated samples at all time points over the three-month study. These experimental data indicate that the product packaging and the sesame oil used to formulate dronabinol capsules efficiently protect Δ9-THC from oxidative degradation to cannabinol; this suggests that pharmacies can store dronabinol capsules in nonrefrigerated automated dispensing systems, with a capsule expiration date of 90 days after removal from the refrigerator. Conclusion Dronabinol capsules may be stored at room temperature in their original packaging for up to three months without compromising capsule appearance and with minimal reduction in Δ9-THC concentration.


2015 ◽  
Vol 47 (6) ◽  
pp. 232-239 ◽  
Author(s):  
Gustav Holmgren ◽  
Nidal Ghosheh ◽  
Xianmin Zeng ◽  
Yalda Bogestål ◽  
Peter Sartipy ◽  
...  

Reference genes, often referred to as housekeeping genes (HKGs), are frequently used to normalize gene expression data based on the assumption that they are expressed at a constant level in the cells. However, several studies have shown that there may be a large variability in the gene expression levels of HKGs in various cell types. In a previous study, employing human embryonic stem cells (hESCs) subjected to spontaneous differentiation, we observed that the expression of commonly used HKG varied to a degree that rendered them inappropriate to use as reference genes under those experimental settings. Here we present a substantially extended study of the HKG signature in human pluripotent stem cells (hPSC), including nine global gene expression datasets from both hESC and human induced pluripotent stem cells, obtained during directed differentiation toward endoderm-, mesoderm-, and ectoderm derivatives. Sets of stably expressed genes were compiled, and a handful of genes (e.g., EID2, ZNF324B, CAPN10, and RABEP2) were identified as generally applicable reference genes in hPSCs across all cell lines and experimental conditions. The stability in gene expression profiles was confirmed by reverse transcription quantitative PCR analysis. Taken together, the current results suggest that differentiating hPSCs have a distinct HKG signature, which in some aspects is different from somatic cell types, and underscore the necessity to validate the stability of reference genes under the actual experimental setup used. In addition, the novel putative HKGs identified in this study can preferentially be used for normalization of gene expression data obtained from differentiating hPSCs.


2021 ◽  
Author(s):  
Mehboobali Pannipara ◽  
Abdullah G Al-Sehemi

Abstract Carboxylic acid supramolecular synthon exhibited dimer or catemer motifs in the crystal lattice depend on the substituent and other functional groups present in the structure. In general, presence of other competing functional groups produced catemer motifs whereas unsubstituted acids showed dimer. In this manuscript, we have synthesized a new aryl ether amine-based Schiff base with carboxylic acid functionality ( 1 ) and demonstrated polymorphic structure via catemer ( 1a ) and dimer ( 1b ) motifs in the solid state. In both the structure, carboxylic acid group adopted different orientation in the crystal lattice. The different H-bonding lead to modulation of optical properties that was further supported highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) calculation. Further the stability calculation indicates that catemer structure was more stable by 8.54 kcal/mole relative to dimer motifs. In contrast, naphthyl group attached carboxylic acid structure did not show neither dimer nor catemer motifs in the crystal lattice as compared to diethylaminophenyl group, which confirm the presence of other substituent or competing functional groups strongly influence on the motifs of supramolecular interactions.


Sign in / Sign up

Export Citation Format

Share Document