scholarly journals HARDWARE-SOFTWARE EMBEDDED SYSTEM OF SIGNAL FREQUENCY SELECTION ON GYRATOR

2021 ◽  
Vol 82 (1) ◽  
pp. 37-42
Author(s):  
Gryhoriy Barylo ◽  
◽  
Oksana Boyko ◽  
Ihor Helzhynskyy ◽  
Tetyana Marusenkova ◽  
...  

The work is devoted to the problem of frequency-selective signal conversion in microelectronic sensor devices. It has been shown that the signal path of such devices, in particular, sensor nodes in the concept of the Internet of Things, must meet the requirements of embedded systems using a mixed analog-digital front end. The analysis of the signal transformation of photovoltaic sensors, in particular the problem of a significant parasitic influence of extraneous non-informative optical radiation and electromagnetic interference, has been carried out. SPICE models of photovoltaic sensor signal circuits providing frequency selection on bandwidth filters have been synthesized. The main approaches of hardware-software implementation of the built-in system of frequency selection with the mixed-signal transformation are considered. The signal path of the embedded system includes a gyrator, a software-controlled amplifier, a synchronous demodulator, an analog-to-digital converter, and a digital filter. The implementation is carried out on the platform of the programmable system on a PSoC chip. The integrated circuits of the PSoC 5 LP Family Cypress Semiconductor Corporation are used with a wide range of programmable analog front-end nodes, in particular operating amplifiers, comparators, units on switching capacitors, reference voltage sources on the principle of the forbidden zone, analog multiplexers, signal synthesizers, etc. The efficiency of the mixed analog and digital signal conversion is shown.

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 57
Author(s):  
Letícia C. Souza ◽  
Egidio R. Neto ◽  
Eduardo S. Lima ◽  
Arismar Cerqueira Sodré Junior

We report the experimental implementation of optically-powered wireless sensor nodes based on the power-over-fiber (PoF) technology, aiming at Industrial Internet of Things (IIoT) applications. This technique employs optical fibers to transmit power and is proposed as a solution to address the hazardous industrial environment challenges, e.g., electromagnetic interference and extreme temperatures. The proposed approach enables two different IIoT scenarios, in which wireless transmitter (TX) and receiver (RX) nodes are powered by a PoF system, enabling local and remote temperature data monitoring, with the purpose of achieving an intelligent and reliable process management in industrial production lines. In addition, the system performance is investigated as a function of the delivered electrical power and power transmission efficiency (PTE), which is the primary performance metric of a PoF system. We report 1.4 W electrical power deliver with PTE = 24%. Furthermore, we carry out a voltage stability analysis, demonstrating that the PoF system is capable of delivering stable voltage to a wide range of applications. Finally, we present a comparison of temperature measurements between the proposed approach and a conventional industrial programmable logic controller (PLC). The obtained results demonstrate that PoF might be considered as a potential technology to power and enhance the energy efficiency of IIoT sensing systems.


2020 ◽  
Vol 14 ◽  
Author(s):  
M. Sivaram ◽  
V. Porkodi ◽  
Amin Salih Mohammed ◽  
S. Anbu Karuppusamy

Background: With the advent of IoT, the deployment of batteries with a limited lifetime in remote areas is a major concern. In certain conditions, the network lifetime gets restricted due to limited battery constraints. Subsequently, the collaborative approaches for key facilities help to reduce the constraint demands of the current security protocols. Aim: This work covers and combines a wide range of concepts linked by IoT based on security and energy efficiency. Specifically, this study examines the WSN energy efficiency problem in IoT and security for the management of threats in IoT through collaborative approaches and finally outlines the future. The concept of energy-efficient key protocols which clearly cover heterogeneous IoT communications among peers with different resources has been developed. Because of the low capacity of sensor nodes, energy efficiency in WSNs has been an important concern. Methods: Hence, in this paper, we present an algorithm for Artificial Bee Colony (ABC) which reviews security and energy consumption to discuss their constraints in the IoT scenarios. Results: The results of a detailed experimental assessment are analyzed in terms of communication cost, energy consumption and security, which prove the relevance of a proposed ABC approach and a key establishment. Conclusion: The validation of DTLS-ABC consists of designing an inter-node cooperation trust model for the creation of a trusted community of elements that are mutually supportive. Initial attempts to design the key methods for management are appropriate individual IoT devices. This gives the system designers, an option that considers the question of scalability.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1031
Author(s):  
Joseba Gorospe ◽  
Rubén Mulero ◽  
Olatz Arbelaitz ◽  
Javier Muguerza ◽  
Miguel Ángel Antón

Deep learning techniques are being increasingly used in the scientific community as a consequence of the high computational capacity of current systems and the increase in the amount of data available as a result of the digitalisation of society in general and the industrial world in particular. In addition, the immersion of the field of edge computing, which focuses on integrating artificial intelligence as close as possible to the client, makes it possible to implement systems that act in real time without the need to transfer all of the data to centralised servers. The combination of these two concepts can lead to systems with the capacity to make correct decisions and act based on them immediately and in situ. Despite this, the low capacity of embedded systems greatly hinders this integration, so the possibility of being able to integrate them into a wide range of micro-controllers can be a great advantage. This paper contributes with the generation of an environment based on Mbed OS and TensorFlow Lite to be embedded in any general purpose embedded system, allowing the introduction of deep learning architectures. The experiments herein prove that the proposed system is competitive if compared to other commercial systems.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Caroline O’Keeffe ◽  
Laura Rhian Pickard ◽  
Juan Cao ◽  
Giuliano Allegri ◽  
Ivana K. Partridge ◽  
...  

AbstractConventional carbon fibre laminates are known to be moderately electrically conductive in-plane, but have a poor through-thickness conductivity. This poses a problem for functionality aspects that are of increasing importance to industry, such as sensing, current collection, inductive/resistive heating, electromagnetic interference (EMI) shielding, etc. This restriction is of course more pronounced for non-conductive composite reinforcements such as glass, organic or natural fibres. Among various solutions to boost through-thickness electrical conductivity, tufting with hybrid micro-braided metal-carbon fibre yarns is one of the most promising. As a well-characterised method of through thickness reinforcement, tufting is easily implementable in a manufacturing environment. The hybridisation of materials in the braid promotes the resilience and integrity of yarns, while integrating metal wires opens up a wide range of multifunctional applications. Many configurations can be produced by varying braid patterns and the constituting yarns/wires. A predictive design tool is therefore necessary to select the right material configuration for the desired functional and structural performance. This paper suggests a fast and robust method for generating finite-element models of the braids, validates the prediction of micro-architecture and electrical conductivity, and demonstrates successful manufacturing of composites enhanced with braided tufts.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Asmaa Ez-Zaidi ◽  
Said Rakrak

Wireless sensor networks have been the subject of intense research in recent years. Sensor nodes are used in wide range of applications such as security, military, and environmental monitoring. One of the most interesting applications in wireless sensor networks is target tracking, which mainly consists in detecting and monitoring the motion of mobile targets. In this paper, we present a comprehensive survey of target tracking approaches. We then analyze them according to several metrics. We also discuss some of the challenges that influence the performance of tracking schemes. In the end, we conduct detailed analysis and comparison between these algorithms and we conclude with some future directions.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1018
Author(s):  
Vadahanambi Sridhar ◽  
Inwon Lee ◽  
Hyun Park

Metal organic framework (MOF)-derived carbon nanostructures (MDC) synthesized by either calcinations or carbonization or pyrolysis are emerging as attractive materials for a wide range of applications like batteries, super-capacitors, sensors, water treatment, etc. But the process of transformation of MOFs into MDCs is time-consuming, with reactions requiring inert atmospheres and reaction time typically running into hours. In this manuscript, we report the transformation of 1,4-diazabicyclo[2.2.2]octane, (DABCO)-based MOFs into iron nitride nanoparticles embedded in nitrogen-doped carbon nanotubes by simple, fast and facile microwave pyrolysis. By using graphene oxide and carbon fiber as microwave susceptible surfaces, three-dimensional nitrogen-doped carbon nanotubes vertically grown on reduced graphene oxide (MDNCNT@rGO) and carbon fibers (MDCNT@CF), respectively, were obtained, whose utility as anode material in sodium-ion batteries (MDNCNT@rGO) and for EMI (electromagnetic interference) shielding material (MDCNT@CF) is reported.


2016 ◽  
Vol 34 (4) ◽  
pp. 427-436 ◽  
Author(s):  
Larisa Trichtchenko

Abstract. Power transmission lines above the ground, cables and pipelines in the ground and under the sea, and in general all man-made long grounded conductors are exposed to the variations of the natural electromagnetic field. The resulting currents in the networks (commonly named geomagnetically induced currents, GIC), are produced by the conductive and/or inductive coupling and can compromise or even disrupt system operations and, in extreme cases, cause power blackouts, railway signalling mis-operation, or interfere with pipeline corrosion protection systems. To properly model the GIC in order to mitigate their impacts it is necessary to know the frequency dependence of the response of these systems to the geomagnetic variations which naturally span a wide frequency range. For that, the general equations of the electromagnetic induction in a multi-layered infinitely long cylinder (representing cable, power line wire, rail or pipeline) embedded in uniform media have been solved utilising methods widely used in geophysics. The derived electromagnetic fields and currents include the effects of the electromagnetic properties of each layer and of the different types of the surrounding media. This exact solution then has been used to examine the electromagnetic response of particular samples of long conducting structures to the external electromagnetic wave for a wide range of frequencies. Because the exact solution has a rather complicated structure, simple approximate analytical formulas have been proposed, analysed and compared with the results from the exact model. These approximate formulas show good coincidence in the frequency range spanning from geomagnetic storms (less than mHz) to pulsations (mHz to Hz) to atmospherics (kHz) and above, and can be recommended for use in space weather applications.


Machines ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 56 ◽  
Author(s):  
Chiu-Keng Lai ◽  
Jhang-Shan Ciou ◽  
Chia-Che Tsai

Owing to the benefits of programmable and parallel processing of field programmable gate arrays (FPGAs), they have been widely used for the realization of digital controllers and motor drive systems. Furthermore, they can be used to integrate several functions as an embedded system. In this paper, based on Matrix Laboratory (Matlab)/Simulink and the FPGA chip, we design and implement a stepper motor drive. Generally, motion control systems driven by a stepper motor can be in open-loop or closed-loop form, and pulse generators are used to generate a series of pulse commands, according to the desired acceleration/run/deceleration, in order to the drive system to rotate the motor. In this paper, the speed and position are designed in closed-loop control, and a vector control strategy is applied to the obtained rotor angle to regulate the phase current of the stepper motor to achieve the performance of operating it in low, medium, and high speed situations. The results of simulations and practical experiments based on the FPGA implemented control system are given to show the performances for wide range speed control.


2015 ◽  
Vol 35 (2) ◽  
pp. 67-73 ◽  
Author(s):  
Felipe Denis Mendonça de Oliveira ◽  
Rodrigo Soares Semente ◽  
Jefferson Doolan Fernandes ◽  
Tálison Augusto Correia de Melo ◽  
Serafim Do Nascimento Júnior ◽  
...  

<p class="Abstractandkeywordscontent"><span lang="EN-US">Nowadays, the vast majority of information monitoring in industrial plants is still carried out by wired technologies, in which the installation and maintenance cost is high. However, in outdoor applications, such as those used in the oil and gas industry, the use of Wireless Sensor Networks (WSN) is increasing due to mobility, reliability, and low cost of the sensor nodes that make up the network. Moreover, this solution reduces the risks of workers in classified areas (regions with high probability of accidents occurrence) to the extent that the equipment maintenance is optimized.  This paper proposes the development of the EEWES, an energy efficient wireless sensor network embedded system, which can be applied on industrial environments. This development approach significantly reduces the energy consumption of the sensor nodes by using a method that alternates sleep periods of the transceiver/sensor set with data transmission/reception periods, which reduces the duty cycle while keeping the desirable parameters of the service quality (QoS). The results presented in this paper will be confirmed by field tests.</span></p>


2017 ◽  
Vol 16 (3) ◽  
pp. 6213-6218
Author(s):  
Ramandeep Kaur ◽  
Dinesh Kumar

Wireless sensor networks have become increasingly popular due to their wide range of application. Clustering sensor nodes organizing them hierarchically have proven to be an effective method to provide better data aggregation and scalability for the sensor network while conserving limited energy. Minimizing the energy consumption of a wireless sensor network application is crucial for effective realization of the intended application in terms of cost, lifetime, and functionality. However, the minimizing task is hardly possible as no overall energy cost function is available for optimization. In this paper, we have proposed a modified alogirthm of leach where hard and soft threshold values will be applied for improving the overall throughput and network lifetime.


Sign in / Sign up

Export Citation Format

Share Document