scholarly journals Pengaruh Penambahan Epiklorohidrin Terhadap Sifat Mekanik dan Daya Serap Film Khitosan Sebagai Adsorben

2017 ◽  
Vol 12 (1) ◽  
pp. 31
Author(s):  
Nisfayati Juir ◽  
Rahmi Rahmi ◽  
Marlina Marlina

Pembuatan film khitosan berikatan silang epiklorohidrin telah dilakukan dengan metode inversi fasa. Pada penelitian ini khitosan dimodifikasi dengan epiklorohidrin untuk memperbaiki sifat mekanik dan ketahanannya terhadap asam. Film khitosan hasil modifikasi diuji sifat mekaniknya dengan alat uji tarik dan daya serapnya diuji terhadap ion Cd2+. Hasil uji tarik menunjukkan bahwa dengan adanya pembentuk ikat silang epiklorohidrin  pada khitosan dapat meningkatkan tensile strength film khitosan dan optimum pada komposisi 54,128 % b/b. Hasil uji adsorpsi terhadap ion Cd2+ menunjukkan bahwa penambahan epiklorohidrin dapat meningkatkan kapasitas penyerapan ion Cd2+ sebesar 31,33 %  dibandingkan dengan film khitosan tanpa silang.  Preparation of epichlorohydrin crosslinked  chitosan film has been done by phase inversion method. In this study, chitosan was modified with epichlorohydrin by the purpose of improving its  mechanical properties and adsorption capasity. Mechanical properties of crosslinked chitosan film was examined by tensile test. Adsorption study was done for Cd2+ ions removal. Tensile test results showed  epichlorohydrin as crosslinking agent of chitosan can improve tensile strength and optimum at 54.128 % w/w of composition. The adsorption results for Cd2+ ions showed the addition of epichlorohydrin in chitosan can increase the adsorption capacity of Cd2+ ions 31,33 % compared with non-crosslinked chitosan films.

2014 ◽  
Vol 887-888 ◽  
pp. 824-829
Author(s):  
Qing Fang Lv ◽  
Ji Hong Qin ◽  
Ran Zhu

Laminated veneer lumber is taken as an object of study, and use LVL specimens of different sizes for compression test and tensile test. The goal of the experiment is to investigate the size effect on compressive strength and tensile strength as well as the influence of the secondary glued laminated face, which appears in the secondary molding processes. The results show that both compressive strength and tensile strength have the size effect apparently and the existence of the secondary glued laminated face lower the compressive strength of LVL specimens. Afterwards, the relationship between compressive strength and volume along with tensile strength and area are obtained by the test results.


2012 ◽  
Vol 445 ◽  
pp. 213-218 ◽  
Author(s):  
Ahmet Koyun ◽  
Baris Koksal ◽  
Esma Ahlatcioglu ◽  
A. Binnaz Hazar Yoruc

The mechanical properties, among all the properties of plastic materials, are often the most important properties because virtually all service conditions and the majority of end-use applications involve some degree of mechanical loading [1]. In the present work three different commercial polyethylene materials are tensile tested at four or five different tensile rates and two or three temperatures. Tensile test results against tensile rate include stress at 0.5 % elongation, tensile strength, yield strength, modulus of elasticity, elongation at yield and % elongation are determined. It is concluded that the structure, chain lengths and branching rates of polymer matrix significantly effected tensile test curve characteristic.


2012 ◽  
Vol 192-193 ◽  
pp. 95-100
Author(s):  
Tian Bao Li ◽  
Zhao Yang ◽  
Bing Li ◽  
Yu Long Ye

Hypo/hyper-eutectic Al-Si bi-metal composite parts were prepared by the strain-induced melt activated (SIMA) thixo-forging. The interfaces of the bi-metal composites were observed using OM, and SEM. The tensile strength and hardness of the matrix alloys and the bonding strength at the interface were assessed by tensile test and micro-indent test. Results show that the eutectic structure joined together on the interface under the pressure. However, there are some defects such as holes and impurities were found near the interface. The tensile test samples were broken in Al-20 wt. % Si matrix. The bonding strengths at the interfaces were higher than 80 MPa. Results show that the hardness gradually increasing from 55 HV in Al-7 wt. % Si alloy to 180 HV in Al-20 wt. % Si alloy, which demonstrate the composite interface transited smoothly. The composite interface has an average hardness of 80 HV.


2017 ◽  
Vol 894 ◽  
pp. 21-24 ◽  
Author(s):  
S.Nю Ab Rahim ◽  
Mohd Amri Lajis

In the present work, aluminum AA6061 chip metals were extruded by hot extrusion and the effect of extrusion parameters on the mechanical properties and surface integrity were investigated. The objective of the present studies it to analyze the mechanical and structural properties of 6061 after plastic consolidation by hot extrusion. Tensile test results showed that material extruded using temperature 550°C exhibit higher ultimate tensile strength (UTS) compared with temperature of 400°C. Fracture surfaces shown that ductile fracture mode occurred at condition 500°C and 2 hours, and brittle fracture occurred at condition 400°C.


2014 ◽  
Vol 1048 ◽  
pp. 395-399 ◽  
Author(s):  
Jia Zhi Yang ◽  
Guang Mei Liu ◽  
Dong Ping Sun

A new bacterial cellulose regenerated cellulose membrane (RBC) has been prepared by phase inversion method in LiCl/DMAC solution. The effects of coagulation concentrations on the physical properties of the RBC membranes were studied and optimized. Features of the RBC of membranes obtained using 0%~40% N,N-Dimethylacetamide (DMAC), such as water absorption percentage, porosity (Pr), ultrafilter rate (UFR), and tensile strength were investigated. The RBC membranes prepared with 40% DMAC solution as coagulant exhibit a smooth surface and a high tensile strength with suitable UFR. RBC showed improved permeabilities for urea and vitamin B12when compared with commercial cellulose membranes.


2021 ◽  
Vol 21 (5) ◽  
pp. 1120
Author(s):  
Khabibi Khabibi ◽  
Dwi Siswanta ◽  
Mudasir Mudasir

This study aims to examine the manufacture, characterization, and in vitro hemocompatibility of glutaraldehyde-crosslinked chitosan/carboxymethyl cellulose (CS/CMC-GA) as a hemodialysis membrane. The CS/CMC-GA membrane was prepared using the phase inversion method with 1.5% CS and 0.1% CMC. The chitosan was crosslinked with glutaraldehyde in various monomers ratios, and the membranes formed were characterized by FTIR, SEM, and TGA. Furthermore, the hydrophilicity, swelling, porosity, mechanical strength, and dialysis performance of the membranes against urea and creatinine were systematically examined, and their in-vitro hemocompatibility tests were also conducted. The results showed that the CS/CMC-GA membranes have higher hydrophilicity, swelling, porosity, mechanical strength, and better dialysis performance against urea and creatinine than chitosan without modification. In addition, the hemocompatibility test indicated that the CS/CMC-GA membranes have lower values of protein adsorption, thrombocyte attachment, hemolysis ratio, and partial thromboplastin time (PTT) than that of pristine chitosan. Based on these results, the CC/CMC-GA membranes have better hemocompatibility and the potential to be used as hemodialysis membranes.


2015 ◽  
Vol 749 ◽  
pp. 278-281
Author(s):  
Jia Horng Lin ◽  
Jing Chzi Hsieh ◽  
Jin Mao Chen ◽  
Wen Hao Hsing ◽  
Hsueh Jen Tan ◽  
...  

Geotextiles are made of polymers, and their conjunction with different processes and materials can provide geotextiles with desirable characteristics and functions, such as filtration, separation, and drainage, and thereby meets the environmental requirements. Chemical resistant and mechanical strong polymers, including polyester (PET) and polypropylene (PP), are thus used to prolong the service life of the products made by such materials. This study proposes highly air permeable geotextiles that are made with different thicknesses and various needle punching speeds, and the influences of these two variables over the pore structure and mechanical properties are then examined. PET fibers, PP fibers, and recycled Kevlar fibers are blended, followed by being needle punched with differing spaces and speeds to form geotextiles with various thicknesses and porosities. The textiles are then evaluated for their mechanical strength and porosity. The test results show that a thickness of 4.5 cm and 1.5 cm demonstrate an influence on the tensile strength of the geotextiles, which is ascribed to the webs that are incompletely needle punched. However, the excessive needle punching speed corresponding to a thickness of 0.2 cm results in a decrease in tensile strength, but there is also an increase in the porosity of the geotextiles.


Author(s):  
Yuxin Pan ◽  
Kai Pei ◽  
Yucun Zhou ◽  
Tong Liu ◽  
Meilin Liu ◽  
...  

A straight, open and macro-porous Ni–BaZr0.1Ce0.7Y0.1Yb0.1O3 fuel electrode-supported protonic ceramic electrochemical cell has been fabricated by a modified phase-inversion method.


Sign in / Sign up

Export Citation Format

Share Document