scholarly journals Agarwood Tree Characteristics based on Different Growing Habitat and Ecophysiological Attributes in the Papuan Tropical Forests

2021 ◽  
Vol 9 (3) ◽  
pp. 444-453
Author(s):  
Amilda Auri ◽  
Eny Faridah ◽  
Sumardi ◽  
Suryo Hardiwinoto

Understanding tropical forest characteristics, including forest derivative products such as agarwood, is pivotal. This study focused on perceiving an ideal habitat of the lowland tropical forest ecosystem of West Papua for agarwood-producing tree species. In further, this study identified a close association of biotic and abiotic characteristics to underpin agarwood-producing tree growth. Six sites in three different locations were established to ascertain forest composition and the associated insects. Soil samples were collected to analyze their physical and chemical properties using the Kjeldahl, the Walky and Black, and Atomic Absorption Spectrophotometry (AAS). In addition, temperature, relative humidity, and light intensity were measured. The results noticed two agarwood producing species, Gyrinops caudate and Aquilaria sp., found at an altitude of 400–402 masl in Manokwari, 200–300 masl in Teluk Wondama, and 167.7 masl in Teluk Bintuni. There were no significant differences in temperature, relative humidity, and light intensity. The soil cation exchange capacity was moderate in Manokwari, but it was low in Teluk Wondama and Teluk Bintuni. Total C-organic content in three research sites was classified as high. However, total N content in the three research sites was in the moderate category. The ideal habitat for agarwood in the West Papua forest is from the lowlands to the highlands. Environmental conditions that support the growth of agarwood are moderate temperature, high humidity, and moderate light intensity. Soil fertility also affected the natural growth of agarwood trees. Keywords: abiotic, agarwood association, lowland tropical forest, soil characteristics

Author(s):  
Enita Enita ◽  
Nurhajati Hakim ◽  
Hermansah ◽  
Teguh Budi Prasetyo

Research to improve soil fertility, especially the chemical characteristics of Ultisol, has been carried out by adding compost and lime. The incubation method of soil plus compost at a dose of 0.5 kg/pot – 2 kg/pot and 1x exchanged Al lime was carried out for 2 weeks. The results of soil nutrient analysis after incubation were an increase in pH of 0.58 points, a decrease in exchanged Al to unmeasured, an increase in the C-organic content of the soil by 3.44%, an increase in the total N-value of the soil by 0.19%, an increase in the amount of soil organic matter. P-available was 5.81 ppm and exchanged K soil increased by 0.02 me/100 g soil. Likewise, the micro elements analyzed also increase. Thus there is a change in the chemical properties of the soil towards the better. The increase in nutrients N, P, K, Ca, and Mg clearly comes from tithonia, which is the result of decomposition of tithonia compost which is added containing high nutrients. In addition, tithonia compost produces organic acids that can dissolve previously insoluble nutrients into soluble ones. The improvement of the chemical properties of the soil towards a better direction is expected to be able to increase the growth of oil palm seedlings planted on the seedling medium growing.


2017 ◽  
pp. 31-43
Author(s):  
Berta Ratilla ◽  
Loreme Cagande ◽  
Othello Capuno

Organic farming is one of the management strategies that improve productivity of marginal uplands. The study aimed to: (1) evaluate effects of various organic-based fertilizers on the growth and yield of corn; (2) determine the appropriate combination for optimum yield; and (3) assess changes on the soil physical and chemical properties. Experiment was laid out in Randomized Complete Block Design, with 3 replications and 7 treatments, namely; T0=(0-0-0); T1=1t ha-1 Evans + 45-30-30kg N, P2O5, K2O ha-1; T2=t ha-1 Wellgrow + 45-30-30kg N, P2O5, K2O ha-1; T3=15t ha-1 chicken dung; T4=10t ha-1 chicken dung + 45-30-30kg N, P2O5, K2O ha-1; T5=15t ha-1 Vermicast; and T6=10t ha-1 Vermicast + 45-30-30kg N, P2O5, K2O ha-1. Application of organic-based fertilizers with or without inorganic fertilizers promoted growth of corn than the control. But due to high infestation of corn silk beetle(Monolepta bifasciata Horns), its grain yield was greatly affected. In the second cropping, except for Evans, any of these fertilizers applied alone or combined with 45-30-30kg N, P2O5, K2O ha-1 appeared appropriate in increasing corn earyield. Soil physical and chemical properties changed with addition of organic fertilizers. While bulk density decreased irrespective of treatments, pH, total N, available P and exchangeable K generally increased more with chicken dung application.


1998 ◽  
Vol 38 (2) ◽  
pp. 25-32 ◽  
Author(s):  
C. W. Chu ◽  
C. S. Poon ◽  
R. Y. H. Cheung

Chemically Enhanced Primary Treatment (CEPT) or Chemically Assisted Primary Sedimentation (CAPS) is being employed at the new sewage work on Stonecutters Island as part of the Strategic Sewage Disposal Scheme (SSDS) in Hong Kong. CAPS involves the use of chemical coagulants (such as lime or ferric chloride) to induce coagulation or flocculation and let these finely-divided particles form large aggregates (floc) so that they can settle out within a reasonable period of time. In this study, five sludge samples collected from different sewage treatment plants in Hong Kong were physically and chemically characterized. They were chemically modified sludge from Stonecutters Island (CAPS) raw sludge from Tai Po and Yuen Long Sewage Treatment Plant (STP) (rTP & rYL) and anaerobically digested sludge from Tai Po and Yuen Long STP (dTP & dYL). It was found that CAPS sludge was better than other 4 sludge samples in terms of settleability and dewaterability. CAPS sludge contained significant higher amounts (p<0.01) of extractable compounds than other sludges (except NO3− for dTP, NH4+ and PO43− for dYL). The concentration of total N and P in CAPS sludge were significantly higher (p<0.01) than other sludges (except dYL). The concentrations of total Cu, Pb, Ni, Cd, Cr and K in the CAPS sludge were also significantly higher (p<0.01) than other sludge samples. Most of the metals (Cr, Pb, Cr and Zn) in CAPS sludge were associated with the organically-bounded phase. It is concluded that there are significant differences in both physical and chemical properties between the chemically modified sludge and biological treated sludges.


Author(s):  
Guotao Yang ◽  
Xuechun Wang ◽  
Farhan Nabi ◽  
Hongni Wang ◽  
Changkun Zhao ◽  
...  

AbstractThe architecture of rice plant represents important and complex agronomic traits, such as panicles morphology, which directly influence the microclimate of rice population and consequently grain yield. To enhance yield, modification of plant architecture to create new hybrid cultivars is considered a sustainable approach. The current study includes an investigation of yield and microclimate response index under low to high plant density of two indica hybrid rice R498 (curved panicles) and R499 (erect panicles), from 2017 to 2018. The split-plot design included planting densities of 11.9–36.2 plant/m2. The results showed that compared with R498, R499 produced a higher grain yield of 8.02–8.83 t/ha at a higher planting density of 26.5–36.2 plant/m2. The response index of light intensity and relative humidity to the planting density of R499 was higher than that of R498 at the lower position of the rice population. However, the response index of temperature to the planting density of R499 was higher at the upper position (0.2–1.4%) than at the lower position. Compared with R498, R499 at a high planting density developed lower relative humidity (78–88%) and higher light intensity (9900–15,916 lx) at the lower position of the rice population. Our finding suggests that erect panicles are highly related to grain yield microclimatic contributors under a highly dense rice population, such as light intensity utilization, humidity, and temperature. The application of erect panicle rice type provides a potential strategy for yield improvement by increasing microclimatic conditions in rice.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zuren Li ◽  
Jincai Han ◽  
Haodong Bai ◽  
Di Peng ◽  
Lifeng Wang ◽  
...  

AbstractApplication of a novel bioorganic fertilizer (BIO) has been effectively used to inhibit weeds in rice paddies. To identify changes in soil bacterial community and enzymes in response to BIO treatments, field experiments were carried out in five major rice-growing areas in China. The dominant phylogenetic groups recorded included Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Acidobacteria. Anaeromyxobacter, Bacteroides, Bifidobacterium, Escherichia- Shigella, Geobacter and Haliangium were significantly different between BIO-treatment and untreated control and aided in general function (R), amino acid transport, metabolism (E) and transcription (K) clusters. The soil chemical properties and enzyme activities were less affected by BIO at these study sites. RDA analysis showed that soil bacterial community had a significant positive correlations among northern latitude, eastern longitude, exchangeable K, total K, total P, soil pH, and total N, except for organic matter, hydrolytic N and extractable P. Overall, our work showed that application of BIO does not alter the main community structure and functional diversity of soil bacteria in rice paddies and should be encouraged for use as a sustainable weed management strategy.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Lijun Cheng ◽  
Yong Kang ◽  
Guishui Li

Difference between adsorption of benzene by diatomite and nano-TiO2immobilized on diatomite was investigated. And effects of temperature, light intensity, relative humidity, and initial benzene concentration on adsorption and degradation of benzene by nano-TiO2immobilized on diatomite were also studied. The experimental results showed that when initial benzene concentration was2.2×10−3 mg L−1, it could be degraded to below safe concentration (1.1×10−4 mg L−1) after 50 h when temperature was 20°C, but it just needed 30 h at 35°C. When light intensity was 6750 Lx, it needed 30 h for benzene to be degraded to below safe concentration, but benzene could barely be degraded without light. When relative humidity was 50%, benzene could be degraded to1.0×10−4 mg L−1after 30 h, while its concentration could be reduced to7.0×10−5 mg L−1at the relative humidity of 80%.


Author(s):  
Tan Kar Soon ◽  
Delta Jenetty Denil ◽  
Julian Ransangan

AbstractThe current study was conducted to estimate the baseline concentration of heavy metals in the surface sediment of Marudu Bay. Environmental parameters were measured at the seafloor and samples of the surface sediment were collected at monthly intervals for the period of 12 months. The organic content, total N, total P and concentration of 16 trace metals in the surface sediment were analyzed. The baseline concentration of metals was estimated by geochemical normalization. Anthropogenic inputs of metals were then estimated by calculating the enrichment factor for each element. The result demonstrated that the C/N ratio of sediment at Marudu Bay varies from 15 to 342, which indicates the dominance of terrestrial organic matter. The baseline concentration of V, Fe, Mn, Zn, Ti, Rb and Sr were 26.74 mg kg


2012 ◽  
Vol 524-527 ◽  
pp. 2139-2142
Author(s):  
Shu Li Wang ◽  
Chao Ma ◽  
Wei Bin Yuan

The soil physical and chemical properties of four densities (A:2500/hm2,B:3300/hm2,C:4400/hm2,D:6600/hm2) of hybrid Larch plantations, Larix olgensis plantation(E) and Quercus mandsurica forest(F) were studied in Jiangshanjiao forest farm of Heilongjiang province of China. Soil bulk density, soil porosity, total N, total P, available N and available P were affected significantly by plantation density in hybrid Larch plantations. The lowest surface soil bulk density was in density 2500/hm2. Soil porosity of density 2500/hm2and 3300/hm2was bigger than that of density 4400/hm2and density 6600/hm2. Total N, total P and available N of density 4400/hm2and 3300/hm2were higher than that of density 6600/hm2and density 2500/hm2. Total N, total P, available N and available P of hybrid Larch plantations were not lower than that of Larix olgensis plantation. The results of the soil physical and chemical properties under different densities of hybrid Larch plantations and different types of forest seems to confirm that hybrid Larch plantation did not decreased the soil fertility, and the hybrid Larch plantation with densities of 3300/hm2and 4400/hm2could be conductive to improving the soil quality. The results would provide the theories basis for manage the hybrid Larch plantations.


Sign in / Sign up

Export Citation Format

Share Document