scholarly journals Engine Oil Deterioration based on the Viscosity, flash point and fire point for Different Trip Length

Author(s):  
Dana Kareem Hameed

Fresh engine oils or engine lubricants lose some of their properties during service, engine lubricant deterioration leads to change in oil properties, which ultimately have effect on engine overall performance.  Therefore, it is very important to characterize used engine lubricants at different using conditions to check the performance and ability of existing oils, which in turn protects engine parts and also designs new formulations to produce better type of engine oil or improve the existing oil. Therefore, optimizing engine oil lubricant changing time is very important for reducing environmental impact but renewing engine lubricant before it is due rises a customer’s cost. In this study, the most significant parameters such as kinematic viscosity, flash point and fire point were chosen to determine the changes and deterioration in engine oil properties. The oil samples were multigrade fully synthetic with SAE gradation 10W-30 grand ecodrive is used in 5 different passenger cars. Having information about these properties are crucial chemical and physical behaviours of engine oils and for keeping engine’s lifecycle. The test results of this work show that after 10,000 km, 10W-30 Delta NL motor oil brand (special synthetic with API SL) oil properties such as kinematic viscosity at cold start, 40 °C and 100 °C decreased 22.92%, 23.61% and 22.92% respectively. In addition, both flash point and fire point decreased 15.6% and 14.22% consecutively for the base properties, and according to the test results this type of engine oil is suitable to use for 10,000 km.

2020 ◽  
Vol 4 (2) ◽  
pp. 139-146
Author(s):  
Dana Hameed ◽  
Kameran Ali

Engine oil or lubricating oil has a major effect on the engine life and the proper operation of any engine. Changing the engine oil before it is due increases a customer’s cost. The lubricating oil in every engine performs many functions such as reducing friction, preventing corrosion, protecting the engine against wear, removing all impurities, lubricating the moving parts, and cooling the engine parts. There are several causes for the deterioration of lubricating oil, including the properties of the oil, oil quality, and high engine temperatures. Consequently, the deteriorated oil must be replaced at a specified mileage or at specific time intervals to get the best engine performance. It is very important to know when to change the oil, because changing the oil too late can affect the engine parts and vehicle performance. However, replacing the oil too early influences the economy and environment and is an inefficient use of depleting resources. This study describes the kinematic viscosity, flash point, and fire point of multigrade Society of Automotive Engineers (SAE) 0W-20 Totachi (Totachi Industrial Co. Ltd., Japan) international brand oil, which has a 10,000 km guarantee and is approved by and used in 10 different vehicle brands, to determine the rate of deterioration of the parameters. These parameters are the most important physical behaviors of lubricating engine oils. Having information about these parameters is very important for maintaining an engine’s lifespan. The results of this study showed that after 10,000 km, the Totachi oil parameters such as the kinematic viscosity at cold start, at 40°C and at 100°C, the flash point, and the fire point decreased by 22.03%, 25.98%, 26.75%, 16.94% and 17.34%, respectively, from the base values, and that the oil is suitable to use for 10,000 km.


2018 ◽  
Vol 10 (11) ◽  
pp. 168781401880868 ◽  
Author(s):  
Artur Wolak ◽  
Grzegorz Zając

This article assesses the performance and reduction level of five engine oils available from various manufacturers. The trend and intensity of the cranking viscosity changes as measured in the cold cranking simulator were thoroughly analysed. In the presented experiment, alterations in engine oils appearing during actual operation were noted. The tests were conducted under conditions which can be depicted as ‘harsh’, that is, multiplied starting of the engine, extended engine idling and short stretch driving. All of the engine oil samples were collected from passenger cars of a homogeneous fleet of 25 vehicles. The dynamic (cranking) viscosity was determined according to the ASTM D5293-15. In all analysed cases, there was a dangerously rapid increase (36%–69%) in the cranking viscosity, and the limit values (7000 mPa·s) were reached very quickly (for the mileages in the range of 3000–13,000 km). The obtained results have led to the development of a statistical model, allowing vehicle users/drivers to choose a better engine oil in winter, thus improving the engine’s ability to cold start and protecting it from excessive wear or damage. The test results may help to predict the performance of the engine oil during operation, its service life and an oil-change interval.


Author(s):  
А.А. СИМДЯНКИН ◽  
И.А. УСПЕНСКИЙ ◽  
М.Н. СЛЮСАРЕВ

Проблема и цель. Целью настоящего исследования является оценка влияния частоты ультразвука на смазочные свойства моторных масел и износ узлов трения двигателей при ультразвуковой обработке масел. Методология. Предметом исследований является ультразвуковая обработка моторных масел и вызываемые ею изменения износа узлов трения. Были проведены следующие эксперименты: оценка влияния частоты ультразвука на изменение коэффициента поверхностного натяжения моторных масел при их ультразвуковой обработке; оценка влияния частоты ультразвуковой обработки смазки на износ образцов пар трения при износных испытаниях образцов на машине трения 2070 СМТ 1М. Обработка моторного масла ультразвуком проводилась с помощью экспериментального устройства для генерации ультразвука переменной частоты. Обработке подвергались моторные масла: масло моторное «LukoilDIESELOIL» 10W-40 минеральное; масло моторное «SHELL Helix HX7 Diesel» 10W-40 полусинтетическое; масло моторное «ZIC X7 Diesel» 10W-40 синтетическое. Результаты. Были получены расчетно-экспериментальные зависимости коэффициента поверхностного натяжения от частоты ультразвукового сигнала для минерального, полусинтетического и синтетического моторных масел, а также зависимости фактора износа образцов пар трения от частоты ультразвука длясинтетического моторного масла.Определен диапазон частот ультразвука (17-44 кГц), при котором ультразвуковая обработка синтетического моторного масла дает наибольшее снижение износа пар трения Заключение. На основании проведенных исследований рекомендуется проводить обработку моторного масла ультразвуком в диапазоне частот от 17 до 44 кГц. Рекомендуется также продолжение работ по доработке устройства для генерации ультразвука оптимальной частоты и адаптации его в систему смазки реальных дизельных автотракторных двигателей. Problem and purpose. The purpose of this study was to assess the efect of ultrasound frequency on lubricating properties of engine oils and the wear of friction units of engines when ultrasonic treatment of oils. Methodology. The subject of the research was the ultrasonic treatment of engine oils and the changes in the wear of friction units caused by it. The following experiments were carried out: evaluation of the efect of the ultrasound frequency on the change in the surface tension coefcient of motor oils when their ultrasonic treatment; evaluation of the efect of the frequency of ultrasonic treatment of the lubricant on the wear of samples of friction pairs during wear tests of samples on a 2070 SMT 1M friction machine. Ultrasonic treatment of engine oil was carried out using an experimental device for generating ultrasound of variable frequency. The following engine oils were processed: motor oil "Lukoil DIESEL OIL" 10W-40 mineral; motor oil "SHELL Helix HX7 Diesel" 10W-40 semi-synthetic and motor oil "ZIC X7 Diesel" 10W-40 synthetic. Results. Authors got calculated and experimental dependences of the surface tension coefcient on the frequency of an ultrasonic signal for mineral, semi-synthetic and synthetic motor oils, as well as the dependence of the wear factor of samples of friction pairs on the frequency of ultrasound for synthetic engine oil. The frequency range of ultrasound (17-44 kHz) was determined, in which the ultrasonic treatment of synthetic motor oil gave the greatest reduction in the wear of friction pairs. Conclusion. Based on the studies carried out, it is recommended to treat engine oil with ultrasound in the frequency range from 17 to 44 kHz. It is also recommended to continue work on improving the device for generating ultrasound of the optimal frequency and adapting it to the lubrication system of real diesel automotive engines.


Author(s):  
Vojtěch Kumbár ◽  
Artüras Sabaliauskas

The behaviour of engine oil is very important. In this paper has been evaluated temperature dependence kinematic viscosity of engine oils in the low temperatures. Five different commercially distributed engine oils (primarily intended for automobile engines) with viscosity class 0W–40, 5W–40, 10W–40, 15W–40, and 20W–40 have been evaluated. The temperature dependence kinematic viscosity has been observed in the range of temperature from −15 °C to 15 °C (for all oils). Considerable temperature dependence kinematic viscosity was found and demonstrated in case of all samples, which is in accordance with theoretical assumptions and literature data. Mathematical models have been developed and tested. Temperature dependence dynamic viscosity has been modeled using a polynomials 3rd and 4th degree. The proposed models can be used for prediction of flow behaviour of oils. With monitoring and evaluating we can prevent technical and economic losses.


2021 ◽  
pp. 30-34
Author(s):  
S. V. Pashukevich ◽  

In this work, laboratory tests of M8G2k engine oil are carried out with the introduction of SAP 110 depressants by Shell Additives and Lz 6662 by Lubrizol and their impact on the properties of the lubricant in question are assessed separately. During the tests, the values of the following indicators of engine oils are obtained: kinematic viscosity at 100 °C, base number, flash point in an open crucible, pour point and content of active elements (calcium, zinc). With the help of the SI-010 bench installation, the values of anti-pitting properties are indicated, as well as experiments are carried out on the NAMI-1m and Petter W-1 installations, with their help the tendency to the formation of low- and high-temperature deposits in the internal combustion engine (ICE) and the assessment of anti-corrosion properties respectively. To analyze the detergent properties of the engine oil under consideration, a test procedure are carried out on a D-240 tractor engine. Positive laboratory test results give grounds to recommend using M8G2k engine oil containing SAP 110 or Lz 6662 additives for the D-240 engine manufactured by MMZ


2019 ◽  
Vol 302 ◽  
pp. 01010
Author(s):  
Bogdan Landowski ◽  
Monika Baran

The study presents selected results of viscosity tests performed for different temperatures of lubricating oil with viscosity marked as 5w30. Viscosity tests of new oil and oil right after being used have been compared. Lubricating oil used in a drive unit of a passenger car was tested. A vehicle in which oil had been changed irregularly was purposefully selected for the tests. Its mileage was over 15-20 thousand kilometers. Upon testing the vehicle mileage was above 265 thousand kilometers. The values of selected characteristics of the analyzed engine oils have been determined including: density, kinematic viscosity and viscosity index. FUNGILAB rotary viscometer was used for measurement of the oil kinematic viscosity.


2021 ◽  
Vol 2131 (3) ◽  
pp. 032060
Author(s):  
V Zhukov ◽  
O Melnik ◽  
E Khmelevskaya

Abstract A prerequisite for the long-term and safe operation of marine diesel engines is the high quality of operational materials, which include engine oils and coolants. The required quality of operational materials is ensured by the introduction of additives into their composition, which are now increasingly used as nanoparticles. During operation, as a result of the destruction of additives, the operational properties of coolants and engine oils deteriorate. The conducted studies allowed us to evaluate the change in the lubricating ability of engine oils of two brands that are used in marine diesels during operation. As a characteristic of the lubricating ability of the oil, its kinematic viscosity was used. The experimental determination of the kinematic viscosity of engine oil samples having different periods of operation, and the subsequent mathematical processing of the experimental results made it possible to determine the dependencies characterizing the change in the kinematic viscosity of engine oil during its operation. The research results confirm the possibility of scientific justification for extending the use of marine diesel engine oils, which reduces operating costs and increases the environmental safety of marine diesel engines.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Rashid Abro ◽  
Xiaochun Chen ◽  
Khanji Harijan ◽  
Zulifqar A. Dhakan ◽  
Muhammad Ammar

Engine oils are made from crude oil and its derivatives by mixing of certain other chemicals (additives) for improving their certain properties. Lubricating oil is used to lubricate moving parts of engine, reducing friction, protecting against wear, and removing contaminants from the engine, act as a cleaning agent, and act as an anticorrosion and cooling agent. This research effort focuses on comparative study of re-refined engine oils by extraction of composite solvent, single solvent, and acid treatment methods. Composite solvent was made up of butanol-propane and butanone; propane was used as single solvent. Different properties of refined oil and waste oil were analyzed, such as cloud and pour point, flash point, specific gravity, ash content, viscosity, moisture ratio and acid value. On the basis of experimental work, it was found that the iron contamination decreased from 50 ppm to 13 ppm for composite solvent; for propane solvent it decreased up to 30 ppm and 15 ppm for acid treatment. Results from the flash point, pour point, viscosity, specific gravity, and ash percentage were improved at different degrees, but the best results were seen by using the composite solvent with having drawback of expensiveness.


Author(s):  
Libor Severa ◽  
Miroslav Havlíček ◽  
Vojtěch Kumbár

The objective of this study is to measure how the viscosity of engine oil changes with temperature. Six different commercially distributed engine oils (primarily intended for motorcycle engines) of 10W–40 viscosity grade have been evaluated. Four of the oils were of synthetic type, two of semi–synthetic type. All oils have been assumed to be Newtonian fluids, thus flow curves have not been determined. Oils have been cooled to below zero temperatures and under controlled temperature regulation, kinematic viscosity (mm2 / s) have been measured in the range of −5 °C and +115 °C. Anton Paar digital viscometer with concentric cylinders geometry has been used. In accordance with expected behavior, kinematic viscosity of all oils was decreasing with increasing temperature. Viscosity was found to be independent on oil’s density. Temperature dependence has been modeled using se­ve­ral mathematical models – Vogel equation, Arrhenius equation, polynomial, and Gaussian equation. The best match between experimental and computed data has been achieved for Gaussian equation (R2 = 0.9993). Knowledge of viscosity behavior of an engine oil as a function of its temperature is of great importance, especially when considering running efficiency and performance of combustion engines. Proposed models can be used for description and prediction of rheological behavior of engine oils.


Sign in / Sign up

Export Citation Format

Share Document