scholarly journals Reverse Osmosis Options for Water Supply to a Thermal Power Station

2019 ◽  
Vol 4 (10) ◽  
pp. 143-146
Author(s):  
Khwaiter Imam Rahama Mohammed ◽  
Babiker K. Abdalla ◽  
Eltigani E. Hago

Water in industry is used for operations such as production processing, washing, dissolving, cooling, transportation. Industries often require large amount of water with vary quality. Water quality depends on the purpose of water use. The steam electric power generation industry is defined as those establishments primarily engaged in the steam generation of electrical energy for distribution and sale. Those establishments produce electricity primary from a process utilizing fossil type fuel (coal, oil, or gas) or nuclear fuel in connection with a thermal cycle employing the steam –water system as the thermos-dynamic medium [9]. Water with in boiler drum and steam generation tubes and headers must be soft and clean. Reverse Osmosis is an effective and proven technology to produce water that is suitable for many industrial applications that require demineralized or deionized water with neutral pH and without turbidity and aggressive.

2020 ◽  
Vol 4 (2) ◽  
pp. 21
Author(s):  
Ahmed Remlaoui ◽  
Hammou Soumia, Bent Abdelkader Nafissa .

This article deals with the desalination of seawater and brackish water, which can deal with the problem of water scarcity that threatens certain countries in the world; it is now possible to meet the demand for drinking water.  Currently,  among  the  various  desalination  processes,  the  reverse  osmosis  technique  is  the  most  used. Electrical energy consumption is the most attractive factor in the cost of operating seawater by reverse osmosis in desalination plants.  Desalination  of  water by  solar  energy  can be  considered  as a  very  important  drinking  water alternative.  For  determining  the  electrical  energy  consumption  of  a  single  reverse  osmosis  module,  we  used  the  System  Advisor  Model  (SAM)  to  determine  the  technical  characteristics  and  costs  of  a  parabolic  cylindrical installation and Reverse Osmosis System Analysis (ROSA) to obtain the electrical power of a single reverse osmosis module. The electrical power of a single module is 4101 KW; this is consistent with the manufacturer's data that this power must be between 3900 kW and 4300 KW. Thus, the energy consumption of the system is 4.92 KWh/m3.Thermal power produced by the solar cylindro-parabolic field during the month of May has the maximum that is 208MWth, and the minimum value during the month of April, which equals 6 MWth. Electrical power produced by the plant varied between 47MWe, and 23.8MWe. The maximum energy was generated during the month of July (1900 MWh) with the maximum energy stored (118 MWh).


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 577 ◽  
Author(s):  
Raffaella Striani ◽  
Enrica Stasi ◽  
Antonella Giuri ◽  
Miriam Seiti ◽  
Eleonora Ferraris ◽  
...  

In this study, an original and green procedure to produce water-based solutions containing nanometric recycled carbon particles is proposed. The nanometric particles are obtained starting from carbon waste ashes, produced by the wooden biomass pyro-gasification plant CMD (Costruzioni motori diesel) ECO20. The latter is an integrated system combining a downdraft gasifier, a spark-ignition internal combustion engine, an electric generator and syngas cleaning devices, and it can produce electric and thermal power up to 20 kWe and 40 kWth. The carbon-based ashes (CA) produced by the CMD ECO20 plant were, first, characterized by using differential scanning calorimetry (DSC) and microcomputed tomography (microCT). Afterward, they were reduced in powder by using a milling mortar and analyzed by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectrometry, thermogravimetric analysis (TGA), X-ray diffraction (WAXD) and Fourier-transform infrared (FTIR) spectroscopy. The optimization of an original procedure to reduce the dimensions of the ashes in an aqueous solution was then developed by using ball milling and sonication techniques, and the nanometric dimensions of the particles dispersed in water were estimated by dynamic light scattering (DLS) measurements in the order of 300 nm. Finally, possible industrial applications for the nanomaterials obtained from the waste ashes are suggested, including, for example, inks for Aerosol Jet® Printing (AJ® P).


Author(s):  
A. Giostri ◽  
M. Binotti ◽  
P. Silva ◽  
E. Macchi ◽  
G. Manzolini

Parabolic trough can be considered the state of the art for solar thermal power plants thanks to the almost 30 years experience gained in SEGS and, recently, Nevada Solar One plants in US and Andasol plants in Spain. One of the major issues that limits the wide diffusion of this technology is the high investment cost of the solar field and, particularly, of the solar collector. For this reason, since several years research activity has been trying to develop new solutions with the aim of cost reduction. This work compares commercial Fresnel technology with conventional parabolic trough plant based on synthetic oil as heat transfer fluid at nominal conditions and evaluates yearly average performances. In both technologies, no thermal storage system is considered. In addition, for Fresnel, a Direct Steam Generation (DSG) case is investigated. Performances are calculated by a commercial code, Thermoflex®, with dedicated component to evaluate solar plant. Results will show that, at nominal conditions, Fresnel technology have an optical efficiency of 67% which is lower than 75% of parabolic trough. Calculated net electric efficiency is about 19.25%, while parabolic trough technology achieves 23.6%. In off-design conditions, the gap between Fresnel and parabolic trough increases because the former is significantly affected by high radiation incident angles. The calculated sun-to-electric annual average efficiency for Fresnel plant is 10.2%, consequence of the average optical efficiency of 38.8%, while parabolic trough achieve an overall efficiency of 16%, with an optical one of 52.7%. An additional case with Fresnel collector and synthetic oil outlines differences among investigated cases. Finally, because part of performance difference between PT and Fresnel is simple due to different definitions, additional indexes are introduced in order to make a consistent comparison.


Author(s):  
Alexey Dragunov ◽  
Eugene Saltanov ◽  
Igor Pioro ◽  
Pavel Kirillov ◽  
Romney Duffey

It is well known that the electrical-power generation is the key factor for advances in any other industries, agriculture and level of living. In general, electrical energy can be generated by: 1) non-renewable-energy sources such as coal, natural gas, oil, and nuclear; and 2) renewable-energy sources such as hydro, wind, solar, biomass, geothermal and marine. However, the main sources for electrical-energy generation are: 1) thermal - primary coal and secondary natural gas; 2) “large” hydro and 3) nuclear. The rest of the energy sources might have visible impact just in some countries. Modern advanced thermal power plants have reached very high thermal efficiencies (55–62%). In spite of that they are still the largest emitters of carbon dioxide into atmosphere. Due to that, reliable non-fossil-fuel energy generation, such as nuclear power, becomes more and more attractive. However, current Nuclear Power Plants (NPPs) are way behind by thermal efficiency (30–42%) compared to that of advanced thermal power plants. Therefore, it is important to consider various ways to enhance thermal efficiency of NPPs. The paper presents comparison of thermodynamic cycles and layouts of modern NPPs and discusses ways to improve their thermal efficiencies.


2013 ◽  
Vol 3 (3) ◽  
pp. 260-267
Author(s):  
Ho-Young Jeong ◽  
Yoon-Jin Kim ◽  
Ji-Hee Han ◽  
Dong-Ha Kim ◽  
Jinsik Sohn ◽  
...  

Wastewater reclamation is where wastewater from various sources is purified so the water can be used by human consumption. Among many treatment options, membranes have gained an important place in wastewater reclamation. It allows the production of high quality water from wastewater, with a small footprint and affordable energy consumption. Nevertheless, membrane fouling is regarded as a serious problem due to the high fouling potential of wastewater. In this study, we applied ultraviolet (UV) processes as a pretreatment for membrane systems that are used for wastewater reclamation. Low pressure UV (LUV) and pulsed UV (PUV) were used to decompose or alter the organics in the feed water of the membranes. Effluent organic matter was characterized by total organic carbon (TOC) and UV absorbance (UVA). Also the effect of UV pretreatment on membrane fouling was investigated for microfiltration (MF) and reverse osmosis (RO) processes. The pretreatment of membranes using LUV or PUV was effective to control fouling of hollow fiber MF membranes. This is probably because of the reduction and modification of organics after UV treatments. However, the effect of UV pretreatment on RO flux was less significant, which is attributed to low fouling prophecy after MF treatment.


Author(s):  
Foad Hassaninejadfarahani ◽  
Scott Ormiston

Laminar film condensation is an important phenomenon which occurs in numerous industrial applications such as refrigeration, chemical processing, and thermal power generation industries. It is well known that film condensation heat transfer is greatly reduced in the presence of a non-condensing gas. The present work performs a numerical analysis of the steady-state, laminar film condensation from a vapour-gas mixture in vertical parallel plate channels to demonstrate a computer model that could assist engineering analysts designing systems involving these phenomena. The present model has three new aspects relative to other current work. First, the complete elliptic two-dimensional governing equations are solved in both phases. Thus, the entire channel domain is solved rather than using an approach that marches along the channel from inlet to a prescribed length. Second, a dynamically determined sharp interface is used between the phases. This sharp interface is determined during the solution on a non-orthogonal structured mesh. Third, the governing equations are solved in a fully-coupled approach. The equations for two velocities, pressure, temperature, and gas mass fraction are solved in a coupled method simultaneously for both phases. Discretisation has been done based on a finite volume method and a co-located variable storage scheme. An in-house computer code was developed to implement the numerical solution scheme. Detailed results are presented for laminar film condensation from steam-air mixtures flowing in vertical parallel-plate channels. The results include velocity and pressure profiles, as well as axial variations of film thickness, Nusselt number and interface gas mass fraction. Detailed comparisons are made with results from a parabolic solution approach.


2019 ◽  
Vol 4 (1) ◽  
pp. 7
Author(s):  
Faulincia Faulincia

<p>Referring to Law Number 30 of 2007 concerning Energy, the development of techniques the conversion of electrical energy by using alternative energy sources is interesting for followed for the past few years. This paper discusses calculation analysis power potential of ocean wave conversion using the Oscilating Water system Column (OWC) in the marine area of Indonesia. This system was chosen because it has many advantages compared to other systems and in accordance with the marine and coastal areas of Indonesia. From the calculation of power, the smallest power that can be produced is equal to 348.5838 Watts while the biggest power that can be produced is 623291.4 Watts The application of the oscillating water column system in Kendari waters with an efficiency of 11.971%.<br />Keywords. oscillating water column (OWC), ocean wave energy, electrical energy, power potential,<br />wavelength</p>


Sign in / Sign up

Export Citation Format

Share Document