Tribologische Charakterisierung von Polymerfasern unter Trockenreibung, Mischreibung und Hydrodynamik mittels einer optimierten Pin-on-Disc-Prüfmethode

2021 ◽  
Vol 68 (3-4) ◽  
Author(s):  
Regine Schmitz ◽  
Frank Haupert ◽  
Justus Rüthing ◽  
Michael Sigrüner ◽  
Nicole Strübbe

Based on the conventional pin-on-disc test method, a tribology test rig was adapted and optimized regarding its ability to characterize polymer fibers. The method is explained and first applications in the field of tribological characterization of single fibers are presented. The test sequence to investigate the polymer fibers (diameters of only a few 100 µm) is generated in such a way that data can be recorded continuously as a function of time in the wear range from a few 10 µm to several 100 µm even during the first few minutes. The test mode starts by applying line load and dynamically progresses to area load by changing the contact area during the measurement. It is shown that single fibers can be characterized with respect to their friction and wear properties in different tribological systems. The dependence of the wear rates of fiber material, surface roughness of the counter bodies and lubrication rates is presented.

Author(s):  
Rajaganapathy C ◽  
Vasudevan D

In this paper, an attempt was made, to evaluate the tribological performance of Jatropa oil with addition of nanoparticles, on wear reduction in Al 6082 and it was compared with SAE20W40 engine oil. Experiments were conducted with pure Jatropa oil with different weight percentage of TiO2 nanoparticles such as 0%, 0.1%, 0.3% and 0.5%. The coefficient of friction and specific wear rate of the Al specimens were found by using pin on disc tribo-meter as per ASTM G99 standards, at constant speed of 1m/s using different loads such as 20N, 40N and 60N. The experimental results indicated that the addition of TiO2 with Jatropa oil indicated good friction reduction and anti-wear properties, compared to SAE20W40 engine oil. The lubricant viscosity and thermal conductivity were measured using Redwood viscometer and Transient hot wire method. Surface analysis was done using scanning electron microscopy to the study surface morphology of pin material. Surface examination revealed that TiO2 Nanoparticles lead to smoother worn surfaces than commercial Engine oil SAE20W40.


2007 ◽  
Vol 14 (02) ◽  
pp. 185-191 ◽  
Author(s):  
B. F. YOUSIF ◽  
N. S. M. EL-TAYEB

In the current decade, introducing water as a lubricant for tribo-engineering materials has become a concern for many researchers. In the present study, the wear and friction characteristics of a polyester (CGRP) composite reinforced with a chopped glass mat (CSM) 450 g/m2 was investigated under dry and wet conditions against a polished, stainless steel counterface. Two techniques known as Pin on Disc (POD) and Block on Ring (BOR) were used to perform the experimental tests. The tests were conducted on a newly developed machine that could carry out both techniques. The effects of the applied load (30, 50, 70, 100 N ), sliding velocity (2.8 and 3.9 m/s), and test duration (5–30 min) on wear rates and the coefficients of friction were investigated. Under dry conditions, the temperature of the interface was measured with an infrared thermometer. Worn surface morphologies of the composite were observed with a scanning electron microscopy (SEM) and damage features were characterized. The results showed that the test technique and conditions had significant influences on the wear and friction performance of the CGRP composite. The presence of water as a lubricant enhanced the wear and friction characteristics of the composite as determined by both POD and BOR, and the SEM micrographs demonstrated several damage features under dry/wet conditions, e.g., deformation, as well as fiber peeling, cracking, and cutting.


2019 ◽  
Vol 53 (19) ◽  
pp. 2743-2760
Author(s):  
Soner Savaş ◽  
Nurlan Gurbanov ◽  
Mehmet Doğan

This study puts forth the synergistic effect of fiber concentration and maleic anhydride-grafted polyethylene (PE-g-MA) compatibilization on the abrasive wear properties of high-density polyethylene (HDPE) composites. Composites including carbon, basalt, jute and coconut short fibers with different weight ratios were processed by melt blending and then tested by using a pin-on-disc abrasive wear tester in dry sliding conditions. The test rig was also equipped with a vacuum system, for the first time, to promote two-body abrasive wear of the composites by reducing the wear debris which may be trapped in the wear track and alter the wear properties. In addition, fiber and coupling agent concentrations and test parameters were investigated using L16 full-factorial experimental design and the relationships between these parameters and wear behaviors of the composites were analyzed on the basis of the findings. This work clearly shows that high rigidity obtained by fiber contribution was not beneficial from the abrasive wear resistance point of view, due to repeated plowing effect of the counterpart material under the test conditions. Nevertheless, basalt fiber-reinforced composites showed higher wear resistance than other composites. Except for coconut fibers, PE-g-MA exhibited good miscibility between fibers and matrix, and thus an enhancing effect on the hardness values, and also wear resistance of the samples. Briefly, the rigidity and miscibility of the composites were found in balance for optimum wear rates.


2014 ◽  
Vol 591 ◽  
pp. 81-84
Author(s):  
M. Pradeep ◽  
Packkirisamy Vignesh ◽  
M. Arun ◽  
M. Durairaj

Influence of surface roughness on coefficient of friction of Titanium coated R19 Steel is investigated in this paper using Pin on Disc Apparatus. Wear properties of R19 Steel are evaluated because it is widely used in making the rail wheel and rail roads over the years. Titanium coating of 100nm thickness was deposited on the R19 Steel by Electron Beam Gun Physical Vapor Deposition method. Wear and friction parameters were evaluated using Pin on Disc apparatus. The Surface morphology plays an important role in affecting the wear rate. Non-contact surface roughness tester was used to examine the surface texture and measure the surface roughness of the specimens. The test was carried out in a pin on disc apparatus for Normal Load of 15N, Sliding Velocity of 3m/s and Time 5 min. The texture and the roughness parameters of the surface affect the coefficient of friction. The experimental values of roughness parameters of uncoated and coated disc and its effect on coefficient of friction are compared and validated. Results show that the Coefficient of friction decreases with lower value of Ra. Lower values of frictional force and coefficient of friction results in lower wear rates.


Author(s):  
H. Sh. Hammood ◽  
S. S. Irhayyim ◽  
A. Y. Awad ◽  
H. A. Abdulhadi

Multiwall Carbon nanotubes (MWCNTs) are frequently attractive due to their novel physical and chemical characteristics, as well as their larger aspect ratio and higher conductivity. Therefore, MWCNTs can allow tremendous possibilities for the improvement of the necessarily unique composite materials system. The present work deals with the fabrication of Cu-Fe/CNTs hybrid composites manufactured by powder metallurgy techniques. Copper powder with 10 vol. % of iron powder and different volume fractions of Multi-Wall Carbon Nanotubes (MWCNTs) were mixed to get hybrid composites. The hybrid composites were fabricated by adding 0.3, 0.6, 0.9, and 1.2 vol.% of MWCNTs to Cu- 10% Fe mixture using a mechanical mixer. The samples were compressed under a load of 700 MPa using a hydraulic press to compact the samples. Sintering was done at 900°C for 2 h at 5ºC/min heating rate. The microscopic structure was studied using a Scanning Electron Microscope (SEM). The effect of CNTs on the mechanical and wear properties, such as micro-hardness, dry sliding wear, density, and porosity were studied in detail. The wear tests were carried out at a fixed time of 20 minutes while the applied loads were varied (5, 10, 15, and 20 N). SEM images revealed that CNTs were uniformly distributed with relative agglomeration within the Cu/Fe matrix. The results showed that the hardness, density, and wear rates decreased while the percentage of porosity increased with increasing the CNT volume fraction. Furthermore, the wear rate for all the CNTs contents increased with the applied load.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3281
Author(s):  
Chiara Soffritti ◽  
Annalisa Fortini ◽  
Anna Nastruzzi ◽  
Ramona Sola ◽  
Mattia Merlin ◽  
...  

This work evaluates the dry sliding behavior of anodic aluminum oxides (AAO) formed during one traditional hard anodizing treatment (HA) and two golden hard anodizing treatments (named G and GP, respectively) on a EN AW-6060 aluminum alloy. Three different thicknesses of AAO layers were selected: 25, 50, and 100 μm. Prior to wear tests, microstructure and mechanical properties were determined by scanning electron microscopy (VPSEM/EDS), X-ray diffractometry, diffuse reflectance infrared Fourier transform (DRIFT-FTIR) spectroscopy, roughness, microhardness, and scratch tests. Wear tests were carried out by a pin-on-disc tribometer using a steel disc as the counterpart material. The friction coefficient was provided by the equipment. Anodized pins were weighed before and after tests to assess the wear rate. Worn surfaces were analyzed by VPSEM/EDS and DRITF-FTIR. Based on the results, the GP-treated surfaces with a thickness of 50 μm exhibit the lowest friction coefficients and wear rates. In any case, a tribofilm is observed on the wear tracks. During sliding, its detachment leads to delamination of the underlying anodic aluminum oxides and to abrasion of the aluminum substrate. Finally, the best tribological performance of G- and GP-treated surfaces may be related to the existence of a thin Ag-rich film at the coating/aluminum substrate interfaces.


Author(s):  
L. J. Yang

Wear rates obtained from different investigators could vary significantly due to lack of a standard test method. A test methodology is therefore proposed in this paper to enable the steady-state wear rate to be determined more accurately, consistently, and efficiently. The wear test will be divided into four stages: (i) to conduct the transient wear test; (ii) to predict the steady-state wear coefficient with the required sliding distance based on the transient wear data by using Yang’s second wear coefficient equation; (iii) to conduct confirmation runs to obtain the measured steady-state wear coefficient value; and (iv) to convert the steady-state wear coefficient value into a steady-state wear rate. The proposed methodology is supported by wear data obtained previously on aluminium based matrix composite materials. It is capable of giving more accurate steady-state wear coefficient and wear rate values, as well as saving a lot of testing time and labour, by reducing the number of trial runs required to achieve the steady-state wear condition.


Author(s):  
Shao Lifan ◽  
Ge Yuan ◽  
Kong Dejun

In order to improve the friction and wear properties of Cu10Al–MoS2 coating, the addition of CeO2 is one of the present research hot spots. In this work, Cu10Al–MoS2 coatings with different CeO2 mass fractions were successfully fabricated on Q235 steel using a laser cladding. The microstructure and phase compositions of obtained coatings were analyzed using an ultra-depth of field microscope and X-ray diffraction, respectively. The friction-wear test was carried out under oil lubrication using a ball-on-disk wear tester, and the effects of CeO2 mass fraction on the microstructure, hardness, and friction-wear properties were studied, and the wear mechanism was also discussed. The results show that the laser cladded Cu10Al–MoS2 coatings with the different CeO2 mass fractions were mainly composed of Cu9Al4, Cu, AlFe3, Ni, MoS2, and CeO2 phases. The Vickers-hardness (HV) of Cu10Al–8MoS2–3CeO2, Cu10Al–8MoS2–6CeO2, and Cu10Al–8MoS2–9CeO2 coatings was 418, 445, and 457 HV0.3, respectively, which indicates an increase in hardness with the increase of CeO2 mass fraction. The average coefficients of friction (COF) and wear rates decrease with the increase of CeO2 mass fraction, presenting the outstanding friction reduction and wear resistance performances. The wear mechanism of Cu10Al–MoS2 coatings is changed from abrasive wear with slight fatigue wear to abrasive wear with the increase of CeO2 mass fraction.


Author(s):  
Amit Aherwar ◽  
Amit Singh ◽  
Amar Patnaik ◽  
Deepak Unune

In this study, a series of implant material containing molybdenum of different weight percentages were fabricated via high temperature vertical vacuum casting induction furnace and examined their physical, mechanical and wear properties. The mechanical properties were tested by the micro-hardness tester and the compression testing machine, while the wear performance was analyzed through a pin-on-disc tribometer under different operating conditions at room temperature. Density, hardness, compressive strength and sliding wear were considered as criterions for this study. The proportions of alternatives consist of Co-30Cr as a base material and molybdenum as an alloying element which was varied from 0 to 4wt.%. Due to the conflict between the properties obtained, the Grey relational analysis method (GRA) was applied to choose the best material among the set of alternatives. From the results obtained, it was found that Co-30Cr implant material containing 4wt.%molybdenum provides the best combination of the properties for a given application (i.e. hip femoral head).


Metals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1186
Author(s):  
Sebastian Balos ◽  
Petar Janjatovic ◽  
Miroslav Dramicanin ◽  
Danka Labus Zlatanovic ◽  
Branka Pilic ◽  
...  

In this paper, the influence of TiO2 nanoparticle coating on cobalt-based electrodes was studied. Different coating treatment times were applied, and the results were compared to the hard-faced layer obtained with unmodified electrodes. The hard facing was done in three layers, the first being a Ni-based interlayer, followed by two layers of corrosion and wear-resistant Co-based Stellite 6 alloy. Pin-on-disc wear testing was applied, along with the metallographic study and hardness measurements of the hard-faced layers. Furthermore, energy-dispersive X-ray spectroscopy (EDS) analysis was conducted. It was found that the microstructural properties, as well as microhardness profiles, are modified in hard-faced layers obtained with modified electrodes. Interdendritic distances are altered, as are the dendrite growth directions. Titanium oxides are formed, which, along with the present complex carbides, increase the wear resistance of the hard-faced layers compared to layers obtained with untreated electrodes.


Sign in / Sign up

Export Citation Format

Share Document