scholarly journals Oncology Pharmacist’s Role and Impact on the Multidisciplinary Patient-Centre Practice of Oncology Clinic in Public Hospitals

2019 ◽  
Vol 14 (1) ◽  
pp. 16
Author(s):  
Chu Man Hin ◽  
Chong Chung Hong

Oncology pharmacy service was developed and integrated into the multidisciplinary team of oncology clinic in 2013 at the United Christian Hospital aiming to enhance the holistic patient-centre practice of the clinic through the optimization of the safety and efficacy of anti-cancer treatment. This review aims to describe the role and impact of oncology pharmacists (OPs) in clinical setting to optimize anti-cancer treatment for cancer patients in a multidisciplinary care approach. From selection, prescribing, procurement to monitoring and patient education, OPs significantly contribute to the safety and effective use of anti-neoplastics in any circumstances. OPs provide professional advices to oncologists in choosing the appropriate anti-cancer agents for specific cancer and designing personalized anti-cancer treatment according to patients’ fitness and appropriateness for chemotherapy. Parenteral and oral chemotherapeutic agents carry heightened risk of causing significant patient harm when they are used in errors. Thus, OPs also develop standardized chemotherapy orders and ensure the final dose is appropriate in terms of both hematological and non-hematological responses and tolerability. Moreover, OPs play an important role in procuring anti-cancer drugs and sourcing alternative drug choices that will deliver similar clinical outcomes. In addition, OPs also assure the clinical integrity of anti-cancer drugs for full anti-neoplastic activity and safe administration of these drugs by nursing staff to minimize potential occupational risk. Most importantly, OPs play a vital role in providing direct patient care functions such as drug therapy monitoring and management (e.g. ensure that patients receive sufficient pre-medications for administration of anti-cancer drugs), and medication counseling for patients and their carers to better understand their anti-cancer treatment. The positive impact of integrating OPs into the multidisciplinary patient-center practice of oncology clinic includes (1) reduction in potentially life-threatening medication incidents and cancer drug administration errors in public hospitals; (2) collaboration with oncologists to select the most suitable cancer drug regimens for patients; (3) prevention of potential occupational risk to the healthcare professionals who handle cancer drugs; and (4) provision of optimal therapy treatment, monitoring and counseling to patients to reduce side effects and hospital readmission. The professional drug knowledge of OPs adds value to the multidisciplinary team in oncology clinics and the growth of OPs into effective direct patient care in oncology clinics should be encouraged to optimize medication-related outcomes.

2020 ◽  
Vol 20 (9) ◽  
pp. 779-787
Author(s):  
Kajal Ghosal ◽  
Christian Agatemor ◽  
Richard I. Han ◽  
Amy T. Ku ◽  
Sabu Thomas ◽  
...  

Chemotherapy employs anti-cancer drugs to stop the growth of cancerous cells, but one common obstacle to the success is the development of chemoresistance, which leads to failure of the previously effective anti-cancer drugs. Resistance arises from different mechanistic pathways, and in this critical review, we focus on the Fanconi Anemia (FA) pathway in chemoresistance. This pathway has yet to be intensively researched by mainstream cancer researchers. This review aims to inspire a new thrust toward the contribution of the FA pathway to drug resistance in cancer. We believe an indepth understanding of this pathway will open new frontiers to effectively treat drug-resistant cancer.


Author(s):  
Mrugank Bhaskarkumar Parmar ◽  
Shital Panchal

This study for drug repositioning has been performed for the drugs which are in the market since more than a decade and they are approved with their well-established efficacy and safety in human being. Objective of this study was to reposition the existing non-cancer drug therapy for cancer treatment, which is having well characterized pharmacologic profile with more efficacy and least toxicity as anti-neoplastic agent. We have retrieved the source data from FDA Adverse Event Reporting System (FAERS) for the last 13 years covering duration from 2004 to 2016 and analysed those using pharmacovigilance approach ‘a proposed future novel pharmaceutical tool for drug reposition’. Signal management activity was performed for statistical analysis. Result of statistical analysis derived that propranolol; metformin; pioglitazone; dabigatran and nitroglycerin are the existing non-cancer drugs which deserved for their direct / indirect reposition for cancer treatment and anti-neoplastic activity. Further studies retrieving the source data from other regulatory database (e.g. Eudravigilance of EMA and VigiFlow of WHO) and post-marketing surveillance study with the same objective may adjuvant our results for the reposition of existing drugs by pharmacovigilance approach.


2018 ◽  
Vol 20 (1) ◽  
pp. 51 ◽  
Author(s):  
Yoojung Kwon ◽  
Youngmi Kim ◽  
Hyun Jung ◽  
Dooil Jeoung

Histone modification is associated with resistance to anti-cancer drugs. Epigenetic modifications of histones can regulate resistance to anti-cancer drugs. It has been reported that histone deacetylase 3 (HDAC3) regulates responses to anti-cancer drugs, angiogenic potential, and tumorigenic potential of cancer cells in association with cancer-associated genes (CAGE), and in particular, a cancer/testis antigen gene. In this paper, we report the roles of microRNAs that regulate the expression of HDAC3 and CAGE involved in resistance to anti-cancer drugs and associated mechanisms. In this review, roles of HDAC3-miRNAs-CAGE molecular networks in resistance to anti-cancer drugs, and the relevance of HDAC3 as a target for developing anti-cancer drugs are discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Junjie Zeng ◽  
Wenying Zhao ◽  
Shuhua Yue

The high attrition rates of anti-cancer drugs during clinical development remains a bottleneck problem in pharmaceutical industry. This is partially due to the lack of quantitative, selective, and rapid readouts of anti-cancer drug activity in situ with high resolution. Although fluorescence microscopy has been commonly used in oncology pharmacological research, fluorescent labels are often too large in size for small drug molecules, and thus may disturb the function or metabolism of these molecules. Such challenge can be overcome by coherent Raman scattering microscopy, which is capable of chemically selective, highly sensitive, high spatial resolution, and high-speed imaging, without the need of any labeling. Coherent Raman scattering microscopy has tremendously improved the understanding of pharmaceutical materials in the solid state, pharmacokinetics of anti-cancer drugs and nanocarriers in vitro and in vivo. This review focuses on the latest applications of coherent Raman scattering microscopy as a new emerging platform to facilitate oncology pharmacokinetic research.


Nanoscale ◽  
2018 ◽  
Vol 10 (20) ◽  
pp. 9773-9779 ◽  
Author(s):  
Devleena Samanta ◽  
Niloufar Hosseini-Nassab ◽  
Aidan D. McCarty ◽  
Richard N. Zare

Redox-active anti-cancer drugs can be released without compromising their bioactivity from polypyrrole nanoparticles that respond to ultra-low voltages (−75 mV).


Author(s):  
Shekhar Verma ◽  
Nagendra Chandrawanshi ◽  
Vishal Jain

Around 40% of new chemical entities and drugs are lipophilic or poor aqueous soluble in nature. Among them many anti-cancer drugs are also consist lipophilic properties. Available poorly water soluble anti-cancer drugs are paclitaxel, etoposide, and docetaxel. To get better stability of those anti-cancer drug via encapsulation and searching suitable carrier system for the controlled release, design and development requires of anhydrous nano carrier system. However, to deliver and entrapment of these kind of anti-cancer drugs are very essential with avoidance of water free preparation to get suitable controlled release application and achieve targeting site. The primary objective of proposed chapter is to develop and design novel stable anhydrous or non-aqueous nano emulsion carrier system and provide suitable carrier system for poorly aqueous soluble anti-cancer drugs. Another important aim is to design and develop better stabilizing agent by combining different type of surfactant, co-surfactant, and co-solvent.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Shao-Xing Dai ◽  
Wen-Xing Li ◽  
Fei-Fei Han ◽  
Yi-Cheng Guo ◽  
Jun-Juan Zheng ◽  
...  

Abstract There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 2071-2071 ◽  
Author(s):  
Ali Raza Khaki ◽  
Aakash Desai ◽  
Martin W. Schoen ◽  
Bishal Gyawali ◽  
Eddy J. Chen ◽  
...  

2071 Background: Publication of clinical trial results in peer reviewed literature is essential to inform clinicians regarding the use of new anti-cancer treatments, which often have a low therapeutic ratio and require careful assessment of risks and benefits. Publication of registration trials should precede FDA approval to facilitate evaluation and implementation of new therapies. The timing of trial publication relative to FDA drug approvals has not been systematically investigated. Methods: We collected all FDA drug approvals for a cancer indication between 2000-19. Trials were identified using FDA labels as well as drugs and publications indexed on HemOnc.org. Approvals for generics/biosimilars, non-oncology indications and label revisions without supportive evidence were excluded. Dates of approval, the approval pathway, approval type (new vs expansion), and the first full publication related to the registration were recorded. Trials and approvals were matched using available metadata. We calculated the proportion of drugs approved prior to publication overall and for those receiving accelerated approval (AA). We used logistic regression to compare rates of pre-publication approval by approval pathway and by new vs expanded approval. Results: Among a total of 378 drug approvals, 139 (37%) had pre-publication approval. Of these, the median overall time from approval to publication was 140 days (IQR 64-281 days). For those with approval after publication, median time from publication to approval was 157 days (IQR 72-359 days). The number of drugs approved pre-publication rose by 27% between the first and last quarters of the study period, though, the proportion decreased as more anti-cancer drugs have been approved in recent years (Table). More drugs were approved pre-publication through AA than regular approval (46% vs 34%, OR 1.66 [95% CI 1.03-2.70], p=0.04) and as new approvals vs. expanded approvals (45% vs 32%, OR 1.76 [95% CI 1.15-2.70], p=0.01). Conclusions: A substantial minority of FDA approvals occur before trial results are published, with the odds being higher for drugs receiving AA and for new approvals. Since clinicians rely upon published results to inform risk/benefit decisions, efforts are needed to ensure trial results are published by the time of FDA approval of new cancer drugs and indications. [Table: see text]


2021 ◽  
Author(s):  
Xin Yang ◽  
Limin Ma ◽  
Hongwei Shao ◽  
Xia Ling ◽  
Mengyu Yao ◽  
...  

Chemotherapies for cancer treatment usually suffer from poor targeting ability and serious side-effects. To improve the treatment efficiency and reduce side effects, photoactivatable chemotherapy has been recently proposed for precise cancer treatment with high spatiotemporal resolution. However, most photoactivatable prodrugs require decoration by stoichiometric photo-cleavable groups, which are only responsive to ultraviolet irradiation and suffer from low reaction efficiency. To tackle these challenges, we herein propose a bioorthogonal photo-catalytic activation strategy with riboflavin as the catalyst for in situ transformation of prodrug dihydrochelerythrine (DHCHE) prodrug into anti-cancer drug chelerythrine (CHE), which can efficiently kill cancer cells and inhibit in vivo tumor growth under light irradiation. Meanwhile, the photo-catalytic transformation from DHCHE into CHE was in situ monitored by green-to-red fluorescence conversion, which can be used for precise control of the therapeutic dose. The photocatalytic mechanism was also fully explored by means of density functional theory (DFT) calculations. We believe this imaging-guided bioorthogonal photo-catalytic activation strategy is promising for cancer chemotherapy in clinical applications.


Sign in / Sign up

Export Citation Format

Share Document