scholarly journals Investigasi mekanisme korosi pada pipa pemanas udara di Pabrik Gula Pagotan Madiun

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Fahrudin Kurniawan ◽  
Wawan Trisnadi Putra ◽  
Munaji Munaji ◽  
Rizal Arifin

This study aims to determine the inner surface morphology of pipes and to identify pipe corrosion products using stereo microsocope and X-ray diffraction (XRD) observations. In this study, the sample used was a piece of Blacksteel gas pipe that had been used for 107 days and 570 days with dimensions of 3 cm in length and 4 cm in diameter. The sample was taken from the Air heater Unit of the Pagotan Madiun sugar factory, East Java, Indonesia. Morphology the inside of the tube was observed with a CARL ZEISS Stemi DV4 stereo microscope (32x magnification). Furthermore, the rust material powder on the sample pipe was taken to determine the corrosion product using the XRD X'Pert PRO instrument. The results of observation by using a stereo microscope on the inner surface of air heater pipe that had been used for 107 days and 570 days indicated that the pipe surface experienced corrosion and peeling. From the results of X-ray diffraction (XRD) observations, FeOOH layer were formed from Fe2+ and OH- ions produced from O2 and H2O molecules in the smoke gas from burning bagasse. At the bottom of FeOOH layer, Fe3O4 was formed from the subsequent reaction between FeOOH and Fe2+ ions.Keywords: pipe, air heater, corrosion, smoke gas.

e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Shahram Mehdipour-Ataei ◽  
Leila Akbarian-Feizi

AbstractA diamine monomer containing ester, amide and ether functional groups was prepared and its polymerization reaction with different diisocyanates to give main chain poly(ester amide ether urea)s was investigated. The monomer was synthesized via reaction of terephthaloyl chloride with 4-hydroxybenzoic acid and subsequent reaction of the resulted diacid with 1,8-diamino-3,6-dioxaoctane. The polymers were characterized by FT-IR and 1H-NMR spectroscopic method and elemental analysis. The resulting polymers exhibited excellent solubility in polar solvents. Crystallinity of the resulted polymers was evaluated by wide-angle X-ray diffraction (WXRD) method, and they exhibited semi-crystalline patterns. The glass transition temperatures (Tg) of the polymers determined by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) were in the range of 88-112 °C. The temperatures for 10% weight loss (T10) from their thermogravimetric analysis (TGA) curves were found to be in the range of 297-312 °C in air. Also the prepared polyureas showed liquid crystalline character.


2014 ◽  
Vol 805 ◽  
pp. 343-349
Author(s):  
Carine F. Machado ◽  
Weber G. Moravia

This work evaluated the influence of additions of the ceramic shell residue (CSR), from the industries of Lost Wax Casting, in the modulus of elasticity and porosity of concrete. The CSR was ground and underwent a physical, chemical, and microstructural characterization. It was also analyzed, the environmental risk of the residue. In the physical characterization of the residue were analyzed, the surface area, and particle size distribution. In chemical characterization, the material powder was subjected to testing of X-ray fluorescence (XRF). Microstructural characterization was performed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The residue was utilized like addition by substitution of cement in concrete in the percentages of 10% and 15% by weight of Portland cement. It was evaluated properties of concrete in the fresh and hardened state, such as compressive strength, modulus of elasticity, absorption of water by total immersion and by capillarity. The results showed that the residue can be used in cement matrix and improve some properties of concrete. Thus, the CSR may contribute to improved sustainability and benefit the construction industry.


2007 ◽  
Vol 1040 ◽  
Author(s):  
Hiroaki Yokoo ◽  
Naoki Wakiya ◽  
Naonori Sakamoto ◽  
Takato Nakamura ◽  
Hisao Suzuki

AbstractWe have grown indium nitride (InN) films using In buffer layer on an a-plane sapphire substrate under atmospheric pressure by halide CVD (AP-HCVD). Growth was carried out by two steps: deposition In buffer layer at 900 °C and subsequent growth of InN layer at 650 °C. In order to compare, we also grown InN films on an a-plane sapphire. The InN films are investigated on crystal quality, surface morphology and electrical property using high-resolution X-ray diffraction (HR-XRD), X-ray pole figure, scanning electron microscope (SEM), Hall measurement. The results show that the crystal quality, surface morphology and electrical property of InN films are improved by using In buffer layer.


1992 ◽  
Vol 242 ◽  
Author(s):  
T. D. Moustakas ◽  
R. J. Molnar ◽  
T. Lei ◽  
G. Menon ◽  
C. R. Eddy

ABSTRACTGaN films were grown on c-plane (0001), a-plane (1120) and r-plane (1102) sapphire substrates by the ECR-assisted MBE method. The films were grown using a two-step growth process, in which a GaN buffer is grown first at relatively low temperatures and the rest of the film is grown at higher temperatures. RHEED studies indicate that this growth method promotes lateral growth and leads to films with smooth surface morphology. The epitaxial relationship to the substrate, the crystalline quality and the surface morphology were investigated by RHEED, X-ray diffraction and SEM studies.


2012 ◽  
Vol 488-489 ◽  
pp. 76-81 ◽  
Author(s):  
Subramani Shanmugan ◽  
Mutharasu Devarajan ◽  
Kamarulazizi Ibrahim

Sb layered Te/Cd thin films have been prepared by using Stacked Elemental Layer (SEL) method. The presence of mixed phases (CdTe and Sb2Te3) in the films was confirmed by the x-ray diffraction technique. The calculated structural parameters demonstrated the feasibility of Sb doping via SEL method. The topographical and electrical studies of the synthesized thin films depicted the influence of Sb on both surface morphology and conductivity. The values of conductivity of the annealed films were in between 2 x 10-3 and 175 x 10-2 Scm-2. A desired chemical composition of films was confirmed from spectrum shape analysis using energy dispersive x-ray.


1995 ◽  
Vol 50 (8) ◽  
pp. 1252-1256 ◽  
Author(s):  
Max Herberhold ◽  
Uwe Bertholdt ◽  
Wolfgang Milius

Hexacarbonyl diiron complexes of N-substituted sulfimides (SNR) have been obtained from the parent tetrahedrane, Fe2(CO)6(μ-SNH) (1), by deprotonation to give the anion Fe2(CO)6(μ-SN-) (2) and subsequent reaction with either trialkyloxonium or carbenium tetrafluoroborates. The new aza-diferra-thia-tetrahedranes, Fe2(CO)6(μ-SNR) (R = CH3 (3a), C2H5 (3b), CPh3 (3c), cyclo-C3Ph3 (3d), cyclo-C7H7 (3e), and cyclo-(C7H7)M (CO)3 with M = Cr (3f), Mo (3g), W (3h)) were characterized by their 1H and 13C NMR as well as their IR and MS spectra. The molecular structure of Fe2(CO)6[SN-cyclo-C7H7Mo(CO)3] (3g) has been determined by X-ray diffraction.


2018 ◽  
Vol 924 ◽  
pp. 15-18
Author(s):  
Masashi Sonoda ◽  
Kentaro Shioura ◽  
Takahiro Nakano ◽  
Noboru Ohtani ◽  
Masakazu Katsuno ◽  
...  

The defect structure at the growth front of 4H-SiC boules grown using the physical vapor transport (PVT) method has been investigated using high resolution x-ray diffraction and x-ray topography. The crystal parameters such as the c-lattice constant exhibited characteristic variations across the growth front, which appeared to be caused by variation in surface morphology of the as-grown surface of the boules rather than the defect structure underneath the surface. X-ray topography also revealed that basal plane dislocations are hardly nucleated at the growth front during PVT growth of 4H-SiC crystals.


1992 ◽  
Vol 47 (12) ◽  
pp. 1677-1680 ◽  
Author(s):  
Karin Ruhlandt-Senge ◽  
Alfred-Dirk Bacher ◽  
Ulrich Müller

Reaction of ozone with (PPh4)2[As2Cl8] in CH2C12 at low temperatures yields a red compound, possibly an ozonide. Upon evaporation of the solvent at –78 °C the ozone is released again. At -40 °C or above a subsequent reaction yields PPh4[AsCl6], PPh4Cl · H3AsO4, and other products. The crystal structure of PPh4Cl · H3AsO3 was determined by X-ray diffraction (4253 observed reflexions, R = 0.031). It is triclinic, space group P1̅, and consists of H3AsO4 molecules joined to dimer units via H bridges and associated via O–H · · · Cl- bridges to strands. The packing of the PPh4+ ions is discussed. Products of the reaction of (PPh4)2[Sb2Cl8] with ozone in CH2C12 are PPh4[SbCl6] and (PPh4)2[SbOCl4]2 · 2 CH2Cl2.


2003 ◽  
Vol 780 ◽  
Author(s):  
C.Z. Dinu ◽  
R. Tanasa ◽  
V.C. Dinca ◽  
A. Barbalat ◽  
C. Grigoriu ◽  
...  

AbstractPulsed Laser Deposition method (PLD) was used to grow nitinol (NiTi) thin films with goal of investigating their biocompatibility. High purity Ni and Ti targets were alternatively ablated in vacuum with a laser beam (λ=355 nm, 10 Hz) and the material was collected on room temperature Ti substrates. X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and atomic force microscopy analyses have been performed to investigate the chemical composition, crystalline structure and surface morphology of the NiTi films. The nitinol layers biocompatibility has been tested using as a metric the extent to whichthe cells adhereduring the culture period on the surface of NiTi layers deposited on Ti substrates. Vero and fibroblast cell lines dispersed into MEM (Eagle) solution containing 8% fetal bovine serum, at 37° C, were used for tests. Preliminary studies indicate that the interaction at the interface is specifically controlled by the surface morphology, (especially by surface roughness), and by the chemical state of the surface. Cell behavior after contact with NiTi/Ti structure for different intervals (18, 22 and 25 days for the Vero cells, and after 10 and 25 days for fibroblasts) supports the conclusion that NiTi is a very good candidate as a biocompatible material.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 406
Author(s):  
Samiha Saad ◽  
Zakaria Boumerzoug ◽  
Anne Laure Helbert ◽  
François Brisset ◽  
Thierry Baudin

The objective of this work is to study, on a copper wire, the effect of TiO2-nanoparticles on electrodeposited nickel. Both the microstructure and surface morphology (texture) of the coating were investigated. This deposit is obtained from baths of sulfated electroplating Watts. The Ni-TO2 composite coating is deposited at a temperature of 45 °C. The composite deposit is prepared by adding nanoparticles of TiO2 to the electrolyte. The characterization has been carried out by X-ray diffraction, scanning electron microscopy, microhardness measurements, and electron backscatter diffraction (EBSD). Vickers microhardness was used to characterize the mechanical properties of the electrodeposited nickel. The results showed the effects of the TiO2 on the composition, the surface morphology, and the hardness of the deposited layer. However, there was not an effect of TiO2 nanoparticles on texture.


Sign in / Sign up

Export Citation Format

Share Document