scholarly journals Kadar pati akar dan sitokinin endogen pada tanaman teh menghasilkan sebagai dasar penentuan pemangkasan dan aplikasi zat pengatur tumbuh

Kultivasi ◽  
2018 ◽  
Vol 17 (2) ◽  
Author(s):  
Intan Ratna Dewi Anjarsari ◽  
Jajang Sauman Hamdani ◽  
Cucu Suherman Victor Zar ◽  
Tati Nurmala ◽  
Heri Sahrian ◽  
...  

ABSTRAK Pemangkasan pada tanaman teh dilakukan salah satunya untuk menginisiasi tumbuhnya banyak tunas sebagai bakal pembentukan pucuk peko. Pemangkasan mengubah luas daun, kapasitas fotosintesis perdu, mempengaruhi keseimbangan metabolisme antara organ di atas dan di bawah tanah dengan  mengurangi  jumlah tumbuh tunas yang berfungsi sebagai sumber dan pengguna untuk nutrisi dan hormon. Sampai saat ini pertumbuhan tunas sebagai bakal daun setelah pemangkasan terjadi secara alami tanpa penambahan zat pengatur tumbuh (ZPT). Pada dasarnya rekayasa fisiologis dengan menggunakan ZPT sitokinin dapat menjadi pilihan untuk lebih memacu pertumbuhan cabang lateral dan tunas serta memecahkan dormansi pucuk. Tujuan penelitian pendahuluan ini  adalah untuk mengetahui   kadar pati akar, kadar sitokinin endogen, serta status hara tanah  guna menentukan waktu pemangkasan yang tepat dan dasar untuk dilakukan aplikasi zat pengatur tumbuh setelah dipangkas. Penelitian selanjutnya adalah penggunaan sitokinin BAP pada berbgai dosis pada tanaman teh yang sudah dipangkas.  Penelitian pendahuluan dilakukan pada bulan Agustus  hingga Oktober 2017 di kebun percobaan Pusat Penelitian Teh dan Kina (PPTK) Gambung  pada ketinggian 1250 m di atas permukaan laut (dpl). Metode pengambilan sampel daun, akar, dan tanah di lapangan dilakukan secara komposit untuk setiap ulangan selanjutnya dilakukan analisis pati akar, sitokinin endogen serta hara tanah. Hasil uji kualitatif pati akar menggunakan iodium mengindikasikan bahwa tanaman teh siap untuk dipangkas terlihat dari sampel akar yang ditetesi iodium menunjukkan warna hitam. Hasil analisis laboratorium menunjukkan bahwa kadar pai akar berada pada kisaran 6.99 % hingga 9,16% dan sitokinin endogen ada pad akisaran 0,0016% hingga0,0019%.  Penentuan kadar pati akar, kondisi lingkungan serta status hara sebelum pemangkas diperlukan agar meminimalisasi tingkat kematian perdu teh serta analisis sitokinin endogen diperlukan untuk lebih  mengoptimalkan dosis sitokinin yang akan diberikanKata Kunci : pemangkasan, sitokinin endogen, kadar pati akar. ABSTRACT  Pruning on tea plants is  perfomed initiating growth of shoots to be pecco stadia. Pruning changes the leaf area, the capacity of photosynthetic tea bush, affecting the metabolic balance between upper and underground organs by reducing the growing number of buds that function as sources and sinks for nutrients and hormones. Until now the growth of shoots as leaf will after pruning occurs naturally without the addition of plant growth regulating substances (PGR). Essentially physiological engineering using  cytokinins can be an option to increase the growth of lateral branches and buds as well as break the shoot dormancy. The preliminary study was conducted from August to October 2017 at experimental field of Gambung Tea and Quinine Research Center (PPTK) at an altitude of 1250 m above sea level (asl). Preliminary method used in the form of analysis of root starch, endogenous cytokinin and soil nutrients to  determined the proper pruning time and the basis for the application of  plant growth regulator substances after pruning. The results of a qualitative test of root content using iodine indicated that the tea plant was ready to be pruned visible from the root samples that iodized spots showed black. The result of  laboratory test  showed that root starch content was in the range of 6.99 to 9.16. and cytokinin endogen  preliminary analysis showed that the levels are in the range of 0.0016 up to 0.0019. Determination of root starch, environmental conditions and nutrient status before pruning is necessary in order to minimize mortality rate of tea bush as well as analysis of endogenous cytokinin is needed to further optimize the dose of cytokinin to be given. Keywords : cytokinins, pruning,  root starch content

HortScience ◽  
2018 ◽  
Vol 53 (5) ◽  
pp. 651-655 ◽  
Author(s):  
Liping Zhang ◽  
Chen Shen ◽  
Jipeng Wei ◽  
Wenyan Han

6-Benzyladenine (6-BA) is a safe and efficient cytokinin. The adult tea plants of the cv. Longjing 43 were used in this study. The foliar portion of tea bushes were sprayed with different concentrations (50, 100, 200, or 400 mg·L−1) of 6-BA after heavy pruning, when three to four leaves grew out in late May. The effects of 6-BA application on the growth of the new shoots and lateral branches were quantified. After 5 months, treatments with 50, 100, 200, or 400 mg·L−1 6-BA suppressed plant height by 11.0%, 18.0%, 21.0%, or 22.0%, respectively; 6-BA at 100, 200, or 400 mg·L−1 decreased the number of lateral branches by 20.0%, 23.0%, or 18.0%, respectively. Meanwhile, treatments with 50, 200, or 400 mg·L−1 6-BA increased the length of lateral branches by 38.0%, 79.0%, or 81.0% respectively; 200 mg·L−1 6-BA increased the diameter of lateral branches by 8.0%. In addition, after 2 months, 50 or 200 mg·L−1 6-BA did not significantly affect the growth of functional leaves, 50, 100, or 200 mg·L−1 6-BA did not significantly affect photosynthetic rate (Pn) as compared with the control. Furthermore, 200 or 400 mg·L−1 6-BA significantly increased spring tea yield by 28.9% or 13.3%, respectively as compared with the control. In conclusion, 6-BA at the four concentrations promoted dwarfing and the formation of productive lateral branches and increased the spring yield, and 200 mg·L−1 6-BA exerted the best comprehensive effect.


2018 ◽  
Vol 64 (No. 6) ◽  
pp. 283-289 ◽  
Author(s):  
Shao Ya-Dong ◽  
Zhang De-Jian ◽  
Hu Xian-Chun ◽  
Wu Qiang-Sheng ◽  
Jiang Chang-Jun ◽  
...  

Tea plants grown in acidic soils are strongly dependent on arbuscular mycorrhizas, whereas it is not clear whether soil arbuscular mycorrhizal fungi (AMF) improve plant growth, root development, and nutrient absorption in tea plants. A potted study was conducted to determine the effects of Claroideoglomus etunicatum, Diversispora spurca, D. versiformis and a mixture of the three AMF species on plant growth, root morphology, root-hair growth, and leaf nutrient status in Camellia sinensis cv. Fuding Dabaicha in Jingzhou, China. After 12 weeks of AMF inoculation, root mycorrhizal colonization ranged from 15.12% to 40.23%. AMF inoculation heavily increased plant height, shoot and root biomass, and total leaf area, whilst the increased effect was ranked as C. etunicatum > D. spurca > mixed-AMF > D. versiformis in the decreasing order. Mycorrhizal inoculation also considerably increased total root length and volume, whereas obviously inhibited root-hair length and number, in company with an increment in root-hair diameter. Leaf N, P, K, Ca, Mg, Zn, and Mn contents were significantly higher in AMF-inoculated plants than in non-AMF-inoculated plants, regardless of AMF species. It concludes that AMF inoculation had positive effects on plant growth performance, root morphology, and leaf nutrient levels in cv. Fuding Dabaicha seedlings, whilst C. etunicatum performed the best effects.


Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 68
Author(s):  
Lina Ou ◽  
Qiuqiu Zhang ◽  
Dezhong Ji ◽  
Yingying Li ◽  
Xia Zhou ◽  
...  

Chitosan oligosaccharides (COS) has been abundantly studied for its application on regulating plant growth of many horticultural and agricultural crops. We presented here the effect of COS on tea plant growth and yield by physiological and transcriptomic checking. The results showed that COS treatment can enhance the antioxidant activity of superoxide dismutase (SOD) and peroxidase (POD) and increase the content of chlorophyll and soluble sugar in tea plants. The field trail results show that COS treatment can increase tea buds’ density by 13.81–23.16%, the weight of 100 buds by 15.94–18.15%, and the yield by 14.22–21.08%. Transcriptome analysis found 5409 COS-responsive differentially expressed genes (DEGs), including 3149 up-regulated and 2260 down-regulated genes, and concluded the possible metabolism pathway that responsible for COS promoting tea plant growth. Our results provided fundamental information for better understanding the molecular mechanisms for COS’s acting on tea plant growth and yield promotion and offer academic support for its practical application in tea plant.


2021 ◽  
Vol 185 ◽  
pp. 104424
Author(s):  
Jesper Liengaard Johansen ◽  
Maiken Lundstad Nielsen ◽  
Mette Vestergård ◽  
Louise Hindborg Mortensen ◽  
Carla Cruz-Paredes ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yerong Zhu ◽  
Xiaoxue Li ◽  
Xuan Gao ◽  
Jiqi Sun ◽  
Xiaoyuan Ji ◽  
...  

Abstract Background Duckweed is considered a promising feedstock for bioethanol production due to its high biomass and starch production. The starch content can be promoted by plant growth regulators after the vegetative reproduction being inhibited. Maleic hydrazide (MH) has been reported to inhibit plant growth, meantime to increase biomass and starch content in some plants. However, the molecular explanation on the mechanism of MH action is still unclear. Results To know the effect and action mode of MH on the growth and starch accumulation in Spirodela polyrrhiza 7498, the plants were treated with different concentrations of MH. Our results showed a substantial inhibition of the growth in both fronds and roots, and increase in starch contents of plants after MH treatment. And with 75 µg/mL MH treatment and on the 8th day of the experiment, starch content was the highest, about 40 mg/g fresh weight, which is about 20-fold higher than the control. The I2-KI staining and TEM results confirmed that 75 µg/mL MH-treated fronds possessed more starch and big starch granules than that of the control. No significant difference for both in the photosynthetic pigment content and the chlorophyll fluorescence parameters of PII was found. Differentially expressed transcripts were analyzed in S. polyrrhiza 7498 after 75 µg/mL MH treatment. The results showed that the expression of some genes related to auxin response reaction was down-regulated; while, expression of some genes involved in carbon fixation, C4 pathway of photosynthesis, starch biosynthesis and ABA signal transduction pathway was up-regulated. Conclusion The results provide novel insights into the underlying mechanisms of growth inhibition and starch accumulation by MH treatment, and provide a selective way for the improvement of starch production in duckweed.


Author(s):  
Wei Cheng ◽  
Xuejing Yu ◽  
Xingguo Wang

Herbaspirillum camelliae WT00C, as a tea-plant endophytic bacterium, not only colonizes specifically in tea plants but also promotes tea-plant growth and selenium enrichment. Different from diazotrophic endophytes H. seropedicae, H. frisingense and H. rubrisubalbicans, H. camelliae WT00C does not display nitrogen-fixing activity. To understand the molecular mechanisms of promoting the growth of tea plant and Se-enrichment, we sequenced and annotated the genome of H. camelliae WT00C. The results showed that the genome was composed of 6,079,821 base pairs with a total of 5,537 genes. The genomic survey also revealed that H. camelliae WT00C was a multifunctional bacterium metabolizing a variety of carbon and nitrogen sources and defending against biotic and abiotic stress. Although this bacterium did not have intact nitrogen-fixing genes, its genome held the genes responsible for indole-3-acetic acid (IAA) biosynthesis, 1-aminocyclopropane-1-carboxylate (ACC) deamination, siderophore synthesis, ammonia formation, urea metabolism, glutathione and selenocompound metabolisms. Biosynthesis of IAA, siderophore, ammonia, urea and ACC deaminase could explain why two bacterial strains promote tea-plant growth and development. Selenocompound metabolism in this bacterium might also benefit tea-plant growth and Se-enrichment. In addition, the genome of H. camelliae also contained a multitude of protein secretion systems T1SS, T3SS, T4SS and T6SS, in which T4SS did not exhibit in other members of the genus Herbaspirillum.


2018 ◽  
Vol 19 (11) ◽  
pp. 3683 ◽  
Author(s):  
Santosh KC ◽  
Meiya Liu ◽  
Qunfeng Zhang ◽  
Kai Fan ◽  
Yuanzhi Shi ◽  
...  

The qualities of tea (Camellia sinensis) are not clearly understood in terms of integrated leading molecular regulatory network mechanisms behind inorganic phosphate (Pi) limitation. Thus, the present work aims to elucidate transcription factor-dependent responses of quality-related metabolites and the expression of genes to phosphate (P) starvation. The tea plant organs were subjected to metabolomics analysis by GC×GC-TOF/MS and UPLC-Q-TOF/MS along with transcription factors and 13 metabolic genes by qRT-PCR. We found P starvation upregulated SPX2 and the change response of Pi is highly dependent on young shoots. This led to increased change in abundance of carbohydrates (fructose and glucose), amino acids in leaves (threonine and methionine), and root (phenylalanine, alanine, tryptophan, and tyrosine). Flavonoids and their glycosides accumulated in leaves and root exposed to P limitation was consistent with the upregulated expression of anthocyanidin reductase (EC 1.3.1.77), leucoanthocyanidin dioxygenase (EC 1.4.11.19) and glycosyltransferases (UGT78D1, UGT78D2 and UGT57L12). Despite the similar kinetics and high correlation response of Pi and SPX2 in young shoots, predominating theanine and other amino acids (serine, threonine, glutamate, valine, methionine, phenylalanine) and catechin (EGC, EGCG and CG) content displayed opposite changes in response to Pi limitation between Fengqing and Longjing-43 tea cultivars.


2018 ◽  
Vol 19 (12) ◽  
pp. 3938 ◽  
Author(s):  
Chi-Hui Sun ◽  
Chin-Ying Yang ◽  
Jason Tzen

Tea (Camellia sinensis L.) contains abundant secondary metabolites, which are regulated by numerous enzymes. Hydroxycinnamoyl transferase (HCT) is involved in the biosynthesis pathways of polyphenols and flavonoids, and it can catalyze the transfer of hydroxyconnamoyl coenzyme A to substrates such as quinate, flavanol glycoside, or anthocyanins, thus resulting in the production of chlorogenic acid or acylated flavonol glycoside. In this study, the CsHCT gene was cloned from the Chin-Shin Oolong tea plant, and its protein functions and characteristics were analyzed. The full-length cDNA of CsHCT contains 1311 base pairs and encodes 436 amino acid sequences. Amino acid sequence was highly conserved with other HCTs from Arabidopsis thaliana, Populus trichocarpa, Hibiscus cannabinus, and Coffea canephora. Quantitative real-time polymerase chain reaction analysis showed that CsHCT is highly expressed in the stem tissues of both tea plants and seedlings. The CsHCT expression level was relatively high at high altitudes. The abiotic stress experiment suggested that low temperature, drought, and high salinity induced CsHCT transcription. Furthermore, the results of hormone treatments indicated that abscisic acid (ABA) induced a considerable increase in the CsHCT expression level. This may be attributed to CsHCT involvement in abiotic stress and ABA signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document