Radiocarbon Age Determinations of Mosaic Mortar Layers of Churches from North Jordan

Radiocarbon ◽  
2015 ◽  
Vol 57 (5) ◽  
pp. 851-863 ◽  
Author(s):  
Khaled Al-Bashaireh

This research is aimed at radiocarbon dating organic inclusions and lime-binder powders of mortar layers of mosaic pavements in four churches of arguable archaeological date located in northern Jordan. One mortar sample from each mosaic pavement of each church was collected, examined by thin section microscopy, and then physically pretreated by gentle crushing and dry sieving to collect lime-binder powders of different grain sizes. Charcoal samples uncovered from three samples and the CO2 gases, collected by hydrochloric acid (HCl) hydrolysis of the powders, were 14C dated using accelerator mass spectrometry (AMS). Four powders of 63–45 μm from the four samples and two powders of 45–38 μm from two samples were analyzed in order to get more precise dates and examine previous proposed models for the interpretation of the results. 14C determinations showed agreement between charcoal ages and archaeological data, while the fine lime-binder's powders, especially from the mosaic's bedding layer, produced more precise dates. Results suggest that 14C date profiles produced by HCl hydrolysis of the lime-binder powders can be clearly interpreted by the existing models.

Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 125
Author(s):  
Monier M. Abd El-Ghani ◽  
Ashraf S. A. El-Sayed ◽  
Ahmed Moubarak ◽  
Rabab Rashad ◽  
Hala Nosier ◽  
...  

Astragalus L. is one of the largest angiosperm complex genera that belongs to the family Fabaceae, subfamily Papilionoideae or Faboideae under the subtribe Astragalinae of the tribe Galegeae. The current study includes the whole plant morphology, DNA barcode (ITS2), and molecular marker (SCoT). Ten taxa representing four species of Astragalus were collected from different localities in Egypt during the period from February 2018 to May 2019. Morphologically, identification and classification of collected Astragalus plants occurred by utilizing the light microscope, regarding the taxonomic revisions of the reference collected Astragalus specimens in other Egyptian Herbaria. For molecular validation, ten SCoT primers were used in this study, producing a unique banding pattern to differentiate between ten samples of Astragalus taxa which generated 212 DNA fragments with an average of 12.2 bands per 10 Astragalus samples, with 8 to 37 fragments per primer. The 212 fragments amplified were distributed as 2 monomorphic bands, 27 polymorphic without unique bands, 183 unique bands (210 Polymorphic with unique bands), and ITS2 gene sequence was showed as the optimal barcode for identifying Astragalus L. using BLAST searched on NCBI database, and afterward, analyzing the chromatogram for ITS region, 10 samples have been identified as two samples representing A. hauarensis, four samples representing A. sieberi, three samples representing A. spinosus and one sample representing A. vogelii. Based on the ITS barcode, A. hauarensis RMG1, A. hauarensis RMG2, A. sieberi RMG1, A. sieberi RMG2, A. sieberi RMG3, A. sieberi RMG4, A. spinosus RMG1, A. spinosus RMG2, A. spinosus RMG3, A. vogelii RMG were deposited into GenBank with accession # MT367587.1, MT367591.1, MT367593.1, MT367585.1, MT367586.1, MT367588.1, MT160347.1, MT367590.1, MT367589.1, MT367592.1, respectively. These results indicated the efficiency of SCoT markers and ITS2 region in identifying and determining genetic relationships between Astragalus species.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2249
Author(s):  
Malgorzata Kucharska ◽  
Barbara Frydrych ◽  
Wiktor Wesolowski ◽  
Jadwiga A. Szymanska ◽  
Anna Kilanowicz

Sandalwood oils are highly desired but expensive, and hence many counterfeit oils are sold in high street shops. The study aimed to determine the content of oils sold under the name sandalwood oil and then compare their chromatographic profile and α- and β santalol content with the requirements of ISO 3518:2002. Gas chromatography with mass spectrometry analysis found that none of the six tested “sandalwood” oils met the ISO standard, especially in terms of α-santalol content. Only one sample was found to contain both α- and β-santalol, characteristic of Santalum album. In three samples, valerianol, elemol, eudesmol isomers, and caryophyllene dominated, indicating the presence of Amyris balsamifera oil. Another two oil samples were found to be synthetic mixtures: benzyl benzoate predominating in one, and synthetic alcohols, such as javanol, polysantol and ebanol, in the other. The product label only gave correct information in three cases: one sample containing Santalum album oil and two samples containing Amyris balsamifera oil. The synthetic samples described as 100% natural essential oil from sandalwood are particularly dangerous and misleading to the consumer. Moreover, the toxicological properties of javanol, polysantol and ebanol, for example, are unknown.


2018 ◽  
Vol 83 (1) ◽  
pp. 10402
Author(s):  
Janusz Typek ◽  
Nikos Guskos ◽  
Grzegorz Zolnierkiewicz ◽  
Zofia Lendzion-Bielun ◽  
Anna Pachla ◽  
...  

Nanocomposites of Fe3O4 nanoparticles (NPs) impregnated with silver NPs display antibacterial properties and may be used in water treatment as disinfection agent. Three samples were synthesized: Fe3O4 NPs obtained by the precipitation method and additionally two samples with added silver NPs with mass ratio of Ag:Fe3O4 equal to 1:100 and 2:100. Magnetic properties of these samples were studied by SQUID magnetometry (in temperature range 2–300 K and magnetic fields up to 70 kG) and magnetic resonance technique at RT. Temperature dependence of dc susceptibility revealed the blocking temperature close to RT in all three samples and allowed to determine the presence of single or multi-mode distribution of NP sizes in a particular sample. Isothermal magnetisation measurements showed that the presence of silver NPs, especially those with smaller sizes, decreases the saturation magnetisation. The shape of ferromagnetic loop registered at T = 2 K was used to discuss the sizes of NP magnetic clusters in our samples. Conclusions obtained from analysis of the ferromagnetic resonance spectra were consistent with the propositions based on the magnetometric studies.


Author(s):  
Timothy Perttula

Recent archaeological investigations at the West Mound at the Sanders site (41LR2), on the Red River in Lamar County, Texas, disclosed substantial archaeological deposits associated with a burned clay floor to an ancestral Caddo structure in the mound. A significant part of the archaeological deposit were unburned animal bones of turtle, deer, and bison, along with Middle Caddo period, Sanders phase, fine and utility ware ceramic sherds; Sanders is one of 26 known Caddo sites in East Texas with bison bones and/or tools. In this article, I discuss the results of the radiocarbon dating of two samples of animal bone—deer and bison—from the West Mound at the Sanders site.


Minerals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 760
Author(s):  
Melinda Hilton ◽  
Mandana Shaygan ◽  
Neil McIntyre ◽  
Thomas Baumgartl ◽  
Mansour Edraki

Coal mine spoils have the potential to create environmental impacts, such as salt load to surrounding environments, particularly when exposed to weathering processes. This study was conducted to understand the effect of physical and chemical weathering on the magnitude, rate, and dynamics of salt release from different coal mine spoils. Five spoil samples from three mines in Queensland were sieved to three different particle size fractions (<2 mm, 2–6 mm, and >6 mm). Two samples were dispersive spoils, and three samples were nondispersive spoils. The spoils were subjected to seven wet–dry cycles, where the samples were periodically leached with deionised water. The rate, magnitude, and dynamics of solutes released from spoils were spoil specific. One set of spoils did not show any evidence of weathering, but initially had higher accumulation of salts. In contrast, broad oxidative weathering occurred in another set of spoils; this led to acid generation and resulted in physical weathering, promoting adsorption–desorption and dissolution and, thus, a greater release of salts. This study indicated that the rate and magnitude of salt release decreased with increasing particle size. Nevertheless, when the spoil is dispersive, the degree of weathering manages salt release irrespective of initial particle size. This study revealed that the long-term salt release from spoils is not only governed by geochemistry, weathering degree, and particle size but also controlled by the water/rock ratio and hydrological conditions of spoils.


1985 ◽  
Vol 2 (2) ◽  
pp. 89-95 ◽  
Author(s):  
J. N. Bohra ◽  
K. S. W. Sing

Adsorption isotherms of nitrogen have been determined at 77 K on three samples of carbonized rayon yarn, both before and after the pre-adsorption of n-nonane. In their original state the three samples were all highly microporous. Application of the αs-method of isotherm analysis reveals that their micropore volumes were 0·17–0·19 cm3g−1 and their external surface areas 20–27 m2g−1 (the corresponding BET areas being 427–483 m2g−1). Nonane pre-adsorption resulted in blockage of the entire micropore structure only in the case of one sample: micropore volumes ∼0·1 cm3g−1 were still available for nitrogen adsorption in the other two samples. It appears that nitrogen molecules were able to gain access to some parts of these micropore structures through wider pore entrances which were not completely blocked by the pre-adsorbed nonane. The work has shown that the nonane pre-adsorption method requires further investigation before it can be used with confidence for the assessment of microporosity.


Radiocarbon ◽  
2019 ◽  
Vol 61 (6) ◽  
pp. 1663-1674
Author(s):  
Toshio Nakamura ◽  
Takako Terada ◽  
Chikako Ueki ◽  
Masayo Minami

ABSTRACTIn our research on traditional clothing and accessories in the Ryukyu Islands of Japan, we have collected cloth fragments from traditional Ryukyuan costumes and other fabric products for radiocarbon (14C) dating. In this study, the cloth samples from historical costumes of noro priestesses (two samples), men and women from high-status families (five samples), and non-costume cloth products (seven samples), belonging to the traditional hereditary religious system of the ancient Ryukyu Kingdom, which lasted from approximately the 14th century AD to 1829 were analyzed. One extra sample originated from a silk shawl known as a Manila shawl. The oldest among the 15 samples dates back to the mid-15th century, but some newer ones belong to the unclear calibrated age range of AD 1650–1950. The measured dates are very consistent with the historical record, suggesting that acetone and acid-alkali-acid treatments are an adequate cleaning method for radiocarbon dating of silk and cotton samples produced in the late Middle Age and later.


2017 ◽  
Vol 82 (3) ◽  
pp. 593-608 ◽  
Author(s):  
James C. Chatters ◽  
James W. Brown ◽  
Steven Hackenberger ◽  
Patrick McCutcheon ◽  
Jonathan Adler

Radiocarbon dating using charcoal and bone collagen, two standards of archaeological chronology, can be difficult to impossible in environments where natural burning is common and bone does not preserve well. In such settings, charcoal ages cannot always be trusted and collagen is unavailable. Calcined bone can be a viable alternative medium in these situations but it has rarely been exploited in the Americas. One area that could benefit from its use is the forested Pacific Northwest. We compare calcined bone ages with charcoal and/or collagen dates from individual features or discrete cultural strata in 10 Washington, Oregon, Idaho, and British Columbia sites dating between 9000 and 100 B.P. Resulting radiocarbon age estimates based on calcined bone closely match those based on charcoal and/or collagen in nearly all cases. We obtained calcined bone dates from three additional Holocene-aged sites that had not previously produced accurate results, obtaining findings consistent with estimates based on cross dating. Preserving well where all other organic media of cultural origin are lost or unreliable, calcined bone holds promise for dating sites in conifer forests and other acidic soil settings, and can allow researchers to refine archaeological sequences that have long defied accurate chronometric analysis.


2018 ◽  
Vol 83 (02) ◽  
pp. 191-197 ◽  
Author(s):  
Xueyin Yuan ◽  
Chao Gao ◽  
Jing Gao

AbstractThe phase transitions involving calcite (CaCO3-I), CaCO3-II, CaCO3-III and CaCO3-IIIb were investigated using a diamond anvil cell and micro-Raman spectroscopy. Based on the results obtained from in situ observations and Raman measurements made with six natural calcite crystals, the phase transition from calcite to CaCO3-II took place between 1.56 and 1.67 GPa under ambient temperature. Under a precise pressure of 1.97 ± 0.03 GPa, three CaCO3 samples were observed to transform from CaCO3-II directly to CaCO3-III, while in the other three samples both CaCO3-III and CaCO3-IIIb crystal structures were detected. Transformation from CaCO3-IIIb to CaCO3-III was completed in a short period in one sample, whereas in the other two samples coexistence of CaCO3-III and CaCO3-IIIb was observed over a wide pressure range from 1.97 to 3.38 GPa, with sluggish transformation from CaCO3-IIIb to CaCO3-III being observed after the samples were preserved under 3.38 GPa for 72 h. Hence, it can be concluded that CaCO3-IIIb is a metastable intermediate phase occurring during the reconstructive transformation from CaCO3-II to CaCO3-III. Splitting of the C–O in-plane bending (ν4) and symmetric stretching (ν1) vibrations and appearance of new lattice vibrations in the Raman spectra of CaCO3-III and CaCO3-IIIb suggest a lowering in crystal symmetry during the transformation from CaCO3-II through CaCO3-IIIb to CaCO3-III, which is in good agreement with the observed sequence of phase symmetries.


2020 ◽  
Vol 103 (5) ◽  
pp. 1277-1281
Author(s):  
Tamer M A M Thabit ◽  
Shokr Abdelsalam Shokr ◽  
Dalia I H Elgeddawy ◽  
Medhat A H El-Naggar

Abstract Wheat and barley grains are two of the most important nutritional grains for humans and animals and they play an essential role in the nutritional cycle by different ratios according to people's nutritional habits. This work aimed to monitor ten of the most important heavy metals in some European-origin wheat and barley grains during the season of 2018. The measured elements, Al, As, Cd, Co, Cr, Hg, Mo, Ni, Pb, and V, are of importance ecologically and biologically and may be involved in many health disorders affecting the human body. Moisture, protein, and specific grain weights were checked. Samples were digested using microwave acid digestion and the elements measured with ICP-MS/MS in He mode to increase sensitivity, lower the background, and avoid interference. Method validation and verification were carried out through spiking at two levels (2.0 and 10 ppb), then RSD, LOD, and LOQ were calculated. Recoveries were &gt;97% for all elements at both levels with an RSD of &lt;7.6%. Results revealed that As, Cd, Hg, and Pb were not detected in most wheat and barley samples, whereas Cd was detected in one sample of Ukrainian wheat and two samples of Estonian barley (but in very small traces). Pb was detected in three samples of Polish wheat (in very small traces). Al, Mo, and Ni were detected in some samples of wheat and barley of all origins, whereas other elements were at very low levels considered to be negligible concentrations.


Sign in / Sign up

Export Citation Format

Share Document