scholarly journals Climate Change Impact on the Glaciers of the Rioni River Basin (Georgia)

2021 ◽  
Vol 24 (s1) ◽  
pp. 27-30
Author(s):  
George Kordzakhia ◽  
Larisa Shengelia ◽  
Genadi Tvauri ◽  
Murman Dzadzamia

Abstract Since the beginning of the 21st century, studies of glaciers in Georgia have become more important, because the degradation of glaciers causes an increase in the intensity and frequency of natural disasters of a glacial and hydrological nature, an increase in water levels in the Black Sea, and a changes in river water regime. Studying the current state of the ice sheet in Georgia is an important national economic task, and to obtainobtaining a scientifically sound answer on modern conditions of the glaciers, due to the impact of current climate change is an urgent task. To solve this task, high-resolution satellite remote sensing (SRS) is used. The r. Rioni basin (West Georgia) is one of the most important glacier basins in Georgia, where the powerful glaciers are spread and their change is of great interest. In this work there are presented the results of the study of r. Rioni glasiers glaciers degradation due to the influence of current climate change including the expected time of their full melting.

2021 ◽  
Author(s):  
Marine Prieur ◽  
Alexander C. Whittaker ◽  
Fritz Schlunegger ◽  
Tor O. Sømme ◽  
Jean Braun ◽  
...  

<p>Sedimentary dynamics and fluxes are influenced by both autogenic and allogenic forcings. A better understanding of the evolution of sedimentary systems through time and space requires us to decipher, and therefore to characterise, the impact of each of these on the Earth’s landscape. Given the current increase in the concentration of atmospheric carbon, studying the impact of rapid and global climate changes is of particular importance at the present time. Such events have been clearly defined in the geologic record. Among them, the Paleocene-Eocene Thermal Maximum (PETM) has been extensively studied worldwide and represents a possible analogue of the rapid current climate warming.</p><p>The present project focuses on the Southern Pyrenees (Spain) where excellent exposures of the Paleocene-Eocene interval span a large range of depositional environments from continental to deep-marine. These conditions allow us to collect data along the whole depositional system in order to document changes in sediment fluxes and paleohydraulic conditions. Because hydrological conditions have an impact on sediment transport through hydrodynamics, paleoflow reconstructions can shed light on changes in sediment dynamics. This information is reconstructed from the statistical distributions of channel morphologies, characteristic system dimensions including bankfull channel depth and width, and grain-sizes.</p><p>With this approach, our aim is to provide both qualitative and quantitative assessments of the magnitude and extent of the perturbation of sedimentary fluxes along an entire source-to-sink system during an episode of extreme climate change. This will lead to a better understanding of the impact of abrupt climate change on earth surface systems in mid-latitudinal areas, with possible implications for current climate adaptation policy.</p><p>This research is carried out in the scope of the lead author’s PhD project and is part of the S2S-FUTURE European Marie Skłodowska-Curie ITN (Grant Agreement No 860383).</p>


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3347
Author(s):  
Zwoździak Jerzy ◽  
Szałata Łukasz ◽  
Zwoździak Anna ◽  
Kwiecińska Kornelia ◽  
Byelyayev Maksym

The upcoming trends related to climate change are increasing the level of interest of social groups in solutions for the implementation and the realization of activities that will ensure the change of these trends and can reduce the impact on the environment, including the health of the community exposed to these impacts. The implementation of solutions aimed at improving the quality of the environment requires taking into account not only the environmental aspects but also the economic aspect. Taking into account the analysis of solutions changing the current state of climate change, the article focuses on the analysis of the potential economic effect caused by the implementation of nature-based solutions (NBSs) in terms of reducing the operating costs related to water retention for local social groups. The analysis is based on a case study, one of the research projects studying nature-based solutions, created as part of the Grow Green project (H2020) in Wrocław in 2017–2022. The results of the analysis are an observed potential positive change in economic effects, i.e., approximately 85.90% of the operating costs related to water retention have been reduced for local social groups by NBSs.


2019 ◽  
Vol 11 (8) ◽  
pp. 2450 ◽  
Author(s):  
Noora Veijalainen ◽  
Lauri Ahopelto ◽  
Mika Marttunen ◽  
Jaakko Jääskeläinen ◽  
Ritva Britschgi ◽  
...  

Severe droughts cause substantial damage to different socio-economic sectors, and even Finland, which has abundant water resources, is not immune to their impacts. To assess the implications of a severe drought in Finland, we carried out a national scale drought impact analysis. Firstly, we simulated water levels and discharges during the severe drought of 1939–1942 (the reference drought) in present-day Finland with a hydrological model. Secondly, we estimated how climate change would alter droughts. Thirdly, we assessed the impact of drought on key water use sectors, with a focus on hydropower and water supply. The results indicate that the long-lasting reference drought caused the discharges to decrease at most by 80% compared to the average annual minimum discharges. The water levels generally fell to the lowest levels in the largest lakes in Central and South-Eastern Finland. Climate change scenarios project on average a small decrease in the lowest water levels during droughts. Severe drought would have a significant impact on water-related sectors, reducing water supply and hydropower production. In this way drought is a risk multiplier for the water–energy–food security nexus. We suggest that the resilience to droughts could be improved with region-specific drought management plans and by including droughts in existing regional preparedness exercises.


2020 ◽  
Author(s):  
Janna Abalichin ◽  
Birte-Marie Ehlers ◽  
Frank Janssen

<p>The ‘German Strategy for Adaptation to Climate Change’ (DAS) provides the political framework to climate change mitigation and adaptation in Germany. The associated ‘Adaption Action Plan’ envisages the establishment of an operational forecasting and projection service for climate, extreme weather and coastal and inland waterbodies. This service is intended to make use of a regional climate modeling framework, with NEMO v4.0.(1) as the ocean component. The atmospheric component will be provided by the German Weather Service (either the current weather forecasting model ICON or COSMO will be used) and will be coupled to NEMO after testing and calibration of NEMO on the regional scale.</p><p>The area of interest includes besides the North Sea and the Baltic Sea the entire North-West-Shelf to take into account cross-shelf transport, the water exchange between North Sea and Baltic Sea and the impact of North Atlantic weather systems on the internal dynamics of the seas. One focus area will be German Bight, well known for its large tidal flats, which make wetting & drying a desirable model feature, which will be tested in future. The used/implemented bathymetry includes the up to date measurements of the sea floor from the EMODNET network.</p><p>To achieve a proper description of the dynamics in this region the model has to be calibrated with regard to the timing and amplitude of the water levels in the coastal waters, the water inflow through the Danish straits, the thermal stratification as well as the seasonality and thickness of the sea ice in the Northern Baltic Sea.</p><p>These efforts are carried out in the pilot project ‘Projection Service for Waterways and Shipping’ (ProWaS).</p>


2020 ◽  
Vol 10 (3) ◽  
pp. 16
Author(s):  
Ado ALI ◽  
Laouali ABDOU ◽  
Maman Maârouhi INOUSSA ◽  
Josiane SEGHIERI ◽  
Ali MAHAMANE

The human use of plant resources and land to face increasing population needs in Africa to the regression or even the disappearance of some useful multi-purpose species such as Diospyros mespiliformis Hochst. Ex A. Rich. Increasing climatic variability is an additional threat for these species. The present study aims to identify the areas that are potentially favorable to D. mespiliformis conservation or regeneration in Niger and to analyze the impact of the current climate change. Thus to assess the D. mespiliformis distribution areas, the geographic coordinates of D. mespiliformis, the bioclimatic data, the soil and vegetation cover were collected and used to modeling based on the principle of maximum entropy (MaxEnt). The soil cover, annual cumulated precipitations and the average temperature are the most determining variables. This study also shows that the ecological niche of D. mespiliformis is located in the Central and Eastern bioclimates, within which almost 3% of the surface is very favorable under the current climate conditions and may reach 3. 94 % under 2050 ones after. These results indicate that the climate change expected in Niger is expected to be more favorable to the studied species than the current climate conditions. This represents an opportunity for its domestication.


2021 ◽  
Vol 22 (2) ◽  
pp. 183-195
Author(s):  
Evgeniia A. Kostianaia ◽  
Andrey G. Kostianoy ◽  
Mikhail A. Scheglov ◽  
Aleksey I. Karelov ◽  
Alexander S. Vasileisky

Abstract This article considers various aspects of the impact of climate change on the railway infrastructure and operations. A brief international overview and the importance of this issue for Russia are given. Temperature effects, permafrost thawing, strong winds, floods and sea level rise, long-term effects, and adaptation measures are discussed. In conclusion, the authors give several recommendations on further research in this area, and highlight that special attention should be given to the areas in the Russian Federation which already face or might soon experience damage from storm events or flooding and sea level rise, namely Kaliningrad Region on the Baltic Sea, the area between Tuapse and Adler in Krasnodar Region on the Black Sea, and on Sakhalin Island from the side of the Sea of Japan.


2021 ◽  
Vol 937 (3) ◽  
pp. 032069
Author(s):  
M I Ruzmetov

Abstract The Global research to assess the impact of climate change on soil-climatic conditions of arid lands has resulted in the following scientific findings: pasture degradation due to inefficient use of available resources; improved technologies for the condition of pasture soils and their restoration and the use of GIS monitoring; soil conditions, desertification factors and degradation processes of anthropogenesis in pasture conditions; developments for remote sensing of the Earth to determine the current state of pastures and the use of GIS technologies; and, improved technologies for adapting to climate change and combating soil degradation. Measures have been developed to restore biodiversity, increase crop productivity, and increase the fertility of these soils. This article describes the relevance of pasture land use around the world and the effectiveness of the use of a variety of water-saving technologies (Water-box) in the foothills and desert pastures.


2021 ◽  
pp. 64-71
Author(s):  
V. Bilotil

The construction industry plays an important role in achieving the UN Sustainable Development Goals and reducing the impact on climate change through the introduction of green building principles. So the article has been devoted to this type of construction as an important area of sustainable development. The interaction of climate change and construction activities has been substantiated in the article. Tasks and principles of sustainable construction have been analyzed. The economic, ecological and social benefits of green construction have been studied. The difference between traditional and green construction has been described. The current state of development of sustainable construction in Ukraine and the world has been considered. Prospects for green construction in Ukraine have been identified. The urgency and necessity of its implementation in our country have been proved.


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 555
Author(s):  
Natalia Vizcaíno-Palomar ◽  
Noelia González-Muñoz ◽  
Santiago C. González-Martínez ◽  
Ricardo Alía ◽  
Marta Benito Garzón

Most populations of Scots pine in Spain are locally adapted to drought, with only a few populations at the southernmost part of the distribution range showing maladaptations to the current climate. Increasing tree heights are predicted for most of the studied populations by the year 2070, under the RCP 8.5 scenario. These results are probably linked to the capacity of this species to acclimatize to new climates. The impact of climate change on tree growth depends on many processes, including the capacity of individuals to respond to changes in the environment. Pines are often locally adapted to their environments, leading to differences among populations. Generally, populations at the margins of the species’ ranges show lower performances in fitness-related traits than core populations. Therefore, under expected changes in climate, populations at the southern part of the species’ ranges could be at a higher risk of maladaptation. Here, we hypothesize that southern Scots pine populations are locally adapted to current climate, and that expected changes in climate may lead to a decrease in tree performance. We used Scots pine tree height growth data from 15-year-old individuals, measured in six common gardens in Spain, where plants from 16 Spanish provenances had been planted. We analyzed tree height growth, accounting for the climate of the planting sites, and the climate of the original population to assess local adaptation, using linear mixed-effect models. We found that: (1) drought drove differences among populations in tree height growth; (2) most populations were locally adapted to drought; (3) tree height was predicted to increase for most of the studied populations by the year 2070 (a concentration of RCP 8.5). Most populations of Scots pine in Spain were locally adapted to drought. This result suggests that marginal populations, despite inhabiting limiting environments, can be adapted to the local current conditions. In addition, the local adaptation and acclimation capacity of populations can help margin populations to keep pace with climate change. Our results highlight the importance of analyzing, case-by-case, populations’ capacities to cope with climate change.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1269
Author(s):  
Andrzej Boczoń ◽  
Anna Kowalska ◽  
Andrzej Stolarek

Climate change affects many elements of the natural environment and strongly influences the hydrology of rivers. In this study, we investigated trends in temperature, precipitation, and the water level characteristics in the small lowland river Lebiedzianka in northeastern Poland for the 50 year long period of observations (1970–2019). We recorded significant increase in air temperature and potential evapotranspiration, but the annual sum of precipitation did not change. We found significant downward trends for annual runoff. The results show a steady decrease in the number of days with high water levels. These changes caused by global warming will have a strong impact on forest habitats associated with high water levels and periodic inundations. In Europe, many of these precious habitats are protected under the Natura 2000 network as sites of high heritage value; nevertheless, their sustainability will be at risk due to the ongoing changes in their hydrological regime.


Sign in / Sign up

Export Citation Format

Share Document