scholarly journals Mechanisms and Effects of Dietary Restriction on CNS and Affective Disorders

2020 ◽  
Vol 47 (2) ◽  
pp. 55-63 ◽  
Author(s):  
E. Haritov ◽  
M. Garalova ◽  
J. Tivcheva ◽  
T. Angelov ◽  
V. Stamenov

AbstractNeuropsychiatric disorders, including depression contribute significantly to global disability and possess high social and health burden. Management is dominated by pharmacotherapy and psychotherapy; nevertheless, such treatments prevent or treat less than half of the patients, suggesting that alternative approaches are required. Emerging data suggest that diet may be an adjustable risk factor for psychiatric disorders. Caloric restriction (CR) possesses protective effects in almost all organs including the brain. However, the precise molecular pathways of these effects remain uncertain. In this review, we will discuss the putative neurobiological mechanisms of CR on the brain. The article will address also the molecular basis of the antidepressant effects of CR, primarily including ghrelin signaling, CREB neurotropic effects and ketone bodies production. Then we will highlight the probable effect of CR on the neuroinflammation, which emerges as a key pathogenetic factor for the majority of neuropsychiatric disorders. Finally, we discuss the so called caloric restriction mimetics, compounds that reproduce properties of CR. Further research will be required to verify the safety and efficacy of CR before a general approval can be proposed to introduce it and its mimetics in clinical practice for the treatment of neuropsychiatric disorders.

2020 ◽  
Vol 47 (4) ◽  
pp. 31-37
Author(s):  
E. Haritov ◽  
J. Tivcheva

AbstractBackground and aims: Increasing evidence indicates that inflammation in the periphery and neuroinflammation in the brain might be involved in the pathophysiology of depressive symptoms in humans. Relatively little is known about the effects of selective serotonin re-uptake inhibitors (SSRI) on individuals exposed to differential dietary regimens, like caloric restriction (CR).The aim of the current study is to assess the antidepressant and antineuroinflammatory effects of CR in single administration and combined with SSRIsantidepressant escitalopram in LPS-induced model of depression in Wistar rats.Materials and methods: For this purpose, we used 36 Wistar rats and applied 3 behavioral tests for depression (FST, SPT and NSFT) in animals and an ELISA-method for measurement of brain IL-1beta levels.Results: Behavioral assessment and results from ELISA-method have shown that CR not only augments the effect of the antidepressant escitalopram on forced swim test (FST) and sucrose preference test (SPT), but also reduces the brain levels of proinflammatory cytokine IL-1beta. Combined with escitalopram, CR enhances antidepressant and antinflamatory properties of this SSRI.Discussion and conclusion: These results show that the response to antidepressive treatment depends on the diverse dietary regimens, especially low-caloric diet. We suggest that the background of this is augmentation of anidepressant and antineuronflammatory properties of some antidepressants by CR. Manipulation of dietary regimens is attractive and new strategy for the management of pharmacoresistant depression.


Author(s):  
Olga Lemzyakova

Refraction of the eye means its ability to bend (refract) light in its own optical system. In a normal state, which is called emmetropia, light rays passing through the optical system of the eye focus on the retina, from where the impulse is transmitted to the visual cortex of the brain and is analyzed there. A person sees equally well both in the distance and near in this situation. However, very often, refractive errors develop as a result of various types of influences. Myopia, or short-sightedness, occurs when the light rays are focused in front of the retina as a result of passing through the optical system of the eye. In this case, a person will clearly distinguish close objects and have difficulties in seeing distant objects. On the opposite side is development of farsightedness (hypermetropia), in which the focusing of light rays occurs behind the retina — such a person sees distant objects clearly, but outlines of closer objects are out of focus. Near vision impairment in old age is a natural process called presbyopia, it develops due to the lens thickening. Both myopia and hypermetropia can have different degrees of severity. The variant, when different refractive errors are observed in different eyes, is called anisometropia. In the same case, if different types of refraction are observed in the same eye, it is astigmatism, and most often it is a congenital pathology. Almost all of the above mentioned refractive errors require correction with spectacles or use of contact lenses. Recently, people are increasingly resorting to the methods of surgical vision correction.


2018 ◽  
Vol 25 (28) ◽  
pp. 3333-3352 ◽  
Author(s):  
Natalia Pessoa Rocha ◽  
Ana Cristina Simoes e Silva ◽  
Thiago Ruiz Rodrigues Prestes ◽  
Victor Feracin ◽  
Caroline Amaral Machado ◽  
...  

Background: The Renin-Angiotensin System (RAS) is a key regulator of cardiovascular and renal homeostasis, but also plays important roles in mediating physiological functions in the central nervous system (CNS). The effects of the RAS were classically described as mediated by angiotensin (Ang) II via angiotensin type 1 (AT1) receptors. However, another arm of the RAS formed by the angiotensin converting enzyme 2 (ACE2), Ang-(1-7) and the Mas receptor has been a matter of investigation due to its important physiological roles, usually counterbalancing the classical effects exerted by Ang II. Objective: We aim to provide an overview of effects elicited by the RAS, especially Ang-(1-7), in the brain. We also aim to discuss the therapeutic potential for neuropsychiatric disorders for the modulation of RAS. Method: We carried out an extensive literature search in PubMed central. Results: Within the brain, Ang-(1-7) contributes to the regulation of blood pressure by acting at regions that control cardiovascular functions. In contrast with Ang II, Ang-(1-7) improves baroreflex sensitivity and plays an inhibitory role in hypothalamic noradrenergic neurotransmission. Ang-(1-7) not only exerts effects related to blood pressure regulation, but also acts as a neuroprotective component of the RAS, for instance, by reducing cerebral infarct size, inflammation, oxidative stress and neuronal apoptosis. Conclusion: Pre-clinical evidence supports a relevant role for ACE2/Ang-(1-7)/Mas receptor axis in several neuropsychiatric conditions, including stress-related and mood disorders, cerebrovascular ischemic and hemorrhagic lesions and neurodegenerative diseases. However, very few data are available regarding the ACE2/Ang-(1-7)/Mas receptor axis in human CNS.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Li Pan ◽  
Kin-Sang Cho ◽  
Irvin Yi ◽  
Chi-Ho To ◽  
Dong Feng Chen ◽  
...  

Ischemia is a common pathological condition present in many neurodegenerative diseases, including ischemic stroke, retinal vascular occlusion, diabetic retinopathy, and glaucoma, threatening the sight and lives of millions of people globally. Ischemia can trigger excessive oxidative stress, inflammation, and vascular dysfunction, leading to the disruption of tissue homeostasis and, ultimately, cell death. Current therapies are very limited and have a narrow time window for effective treatment. Thus, there is an urgent need to develop more effective therapeutic options for ischemia-induced neural injuries. With emerging reports on the pharmacological properties of natural flavonoids, these compounds present potent antioxidative, anti-inflammatory, and antiapoptotic agents for the treatment of ischemic insults. Three major active flavonoids, baicalein, baicalin, and wogonin, have been extracted from Scutellaria baicalensis Georgi (S. baicalensis); all of which are reported to have low cytotoxicity. They have been demonstrated to exert promising pharmacological capabilities in preventing cell and tissue damage. This review focuses on the therapeutic potentials of these flavonoids against ischemia-induced neurotoxicity and damage in the brain and retina. The bioactivity and bioavailability of baicalein, baicalin, and wogonin are also discussed. It is with hope that the therapeutic potential of these flavonoids can be utilized and developed as natural treatments for ischemia-induced injuries of the central nervous system (CNS).


2018 ◽  
Vol 17 (4) ◽  
pp. 281-286 ◽  
Author(s):  
Olga V. Kostina

The review presents an analysis of the mechanisms of iron effect on the brain development. The importance of iron deficiency in the perinatal period is considered as a risk factor for the development of neuropsychiatric disorders in children with autism spectrum disorders (ASDs). Possible causes of sideropenia are discussed; data on haematological and biochemical parameters characterizing iron metabolism in children with ASDs are presented. The demand for studying the role of iron metabolism imbalance in the development of neuropsychiatric disorders in order to clarify pathogenetic mechanisms of ASDs and to determine methods for their correction is emphasized.


2021 ◽  
Author(s):  
Stefanie Schirmeier ◽  
Helen Hertenstein ◽  
Ellen McMullen ◽  
Leon Deharde ◽  
Marko Brankatschk

Abstract Neuronal function is highly energy demanding and thus requires efficient and constant metabolite delivery. Like their mammalian counterparts Drosophila glia are highly glycolytic and provide lactate to fuel neuronal metabolism. However, flies are able to survive for several weeks in the absence of glial glycolysis1. Here, we study how glial cells maintain sufficient nutrient supply to neurons under conditions of carbohydrate restriction. We show that glycolytically impaired glia switch to fatty acid breakdown via β-oxidation and provide ketone bodies as an alternate neuronal fuel. Moreover, flies also rely on glial β-oxidation under starvation conditions with glial loss of β-oxidation increasing susceptibility to starvation. Further, we show that glial cells act as a metabolic sensor in the brain and can induce mobilization of peripheral energy stores to ensure brain metabolic homeostasis. In summary, our study gives pioneering evidence on the importance of glial β-oxidation and ketogenesis for brain function, and survival, under adverse conditions, like malnutrition. The glial capacity to utilize lipids as an energy source seems to be conserved from flies to humans.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 859 ◽  
Author(s):  
Tanjala T. Gipson ◽  
Michael V. Johnston

Tuberous sclerosis complex (TSC) is a multi-system disorder resulting from mutations in either the TSC1 or TSC2 genes leading to hyperactivation of mechanistic target of rapamycin (mTOR) signaling. TSC is commonly associated with autism (61%), intellectual disability (45%), and behavioral, psychiatric, intellectual, academic, neuropsychological, and psychosocial difficulties that are collectively referred to as TSC-associated neuropsychiatric disorders (TAND). More than 90% of children with TSC have epilepsy, including infantile spasms, and early onset of seizures, especially infantile spasms, is associated with greater impairment in intellectual development compared with individuals with TSC without seizures. Development of the mTOR inhibitors everolimus and sirolimus has led to considerable progress in the treatment of renal angiomyolipomata, pulmonary lymphangioleiomyomatosis, and subependymal giant cell astrocytomas in the brain. However, similar therapeutic progress is needed in the treatment of TAND.


1989 ◽  
Vol 155 (S5) ◽  
pp. 37-39 ◽  
Author(s):  
Hinderk M. Emrich

Hypotheses as to the pathogenesis of schizophrenia can be discussed at different levels of a possible manifestation of the causative factor: the macroscopic-morphological, the microscopic-morphological, and the molecular. Some abnormalities have been observed on all of them: e.g. increased ventricular-brain ratios in CT, hypofrontality in SPECT and in glucographic PET-scans, and other macromorphological abnormalities (for reviews cf. Bogerts 1984; Mundt, 1986; Bogerts et al, 1987), gliosis on a microscopic level (Stevens, 1982), and an increased dopamine-binding in in vivo receptor studies (PET as well as in post-mortem studies; Cazzullo, 1988). However, the diversity and variability of these findings point to the view that rather than there being a single distinct pathogenetic factor responsible for the pathogenesis of schizophrenic psychoses, a constitutional disposition exists, which can be described as a functional dysequilibrium within the human brain. From this point of view, schizophrenia would not appear as an inherited disorder of metabolism, but as a weakness of a neurobiological ‘system’, i.e. as an interactional disorder of a complex of networks, in which the interaction between different substructures is labile in such a way that under special conditions (e.g. ‘stress’), a decompensation (functional breakdown) results. In this sense, ‘vulnerability’ to schizophrenia may be interpreted as a consequence of a constitutional deficiency of the brain which results in an inability to stabilise, under specially challenging conditions, the interaction between different substructures of the human brain. Before this ‘functional dysequilibrium-hypothesis’ (which is a special form of a constitutional structural deficiency-hypothesis) is discussed, and before the question is raised as to which are the relevant dysequilibrated components, some indication will be given as to why such an hypothesis appears plausible.


Neurographics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 175-185
Author(s):  
B. Rao ◽  
I. Ikuta ◽  
A. Mahajan ◽  
A.A. Karam ◽  
V.M. Zohrabian

Brain tumors are a diverse group of neoplasms that are a source of substantial morbidity and mortality worldwide. Primary gliomas constitute almost all malignant brain tumors, with the most aggressive as well as most common form in adults, grade IV glioma or glioblastoma multiforme, carrying an especially poor prognosis. Neuroimaging is critical not only in the identification of CNS tumor but also in treatment-planning and assessing the response to therapy. Structured reporting continues to gain traction in radiology by reducing report ambiguity and improving consistency, while keeping referring clinicians and patients informed. The Brain Tumor Reporting and Data System (BT-RADS) is a relatively new paradigm that attempts to simplify and maximize consistency in radiologic reporting. BT-RADS incorporates MR imaging features, clinical assessment, and timing of therapy to assign each study a score or category, which is, in turn, linked to a management suggestion. The purpose of this pictorial review article is to familiarize radiologists and nonradiology neurologic specialists alike with BT-RADS, highlighting both advantages and limitations, in the hope that adoption of this system might ultimately facilitate more effective communication and improve consistency among reports.Learning Objective: To describe the features and underscore the advantages and disadvantages of the Brain Tumor Reporting and Data System (BT-RADS), a relatively new classification system that attempts to simplify and maximize consistency in radiologic reporting


Sign in / Sign up

Export Citation Format

Share Document