scholarly journals Influence of nitrate supplementation on in-vitro methane emission, milk production, ruminal fermentation, and microbial methanotrophs in dairy cows fed at two forage levels

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Majid Sharifi ◽  
Akbar Taghizadeh ◽  
Ali Hosseinkhani ◽  
Valiollah Palangi ◽  
Muhlis Macit ◽  
...  

Abstract Modifying the chemical composition of a diet can be a good strategy for reducing methane emission in the rumen. However, this strategy can have adverse effects on the ruminal microbial flora. The aim of our study was to reduce methane without disturbing ruminal function by stimulating the growth and propagation of methanotrophs. In this study, we randomly divided twenty multiparous Holstein dairy cows into 4 groups in a 2×2 factorial design with two forage levels (40% and 60%) and two nitrate supplementation levels (3.5% and zero). We examined the effect of experimental diets on cow performance, ruminal fermentation, blood metabolites and changes of ruminal microbial flora throughout the experimental period (45-day). Additionally, in vitro methane emission was evaluated. Animals fed diet with 60% forage had greater dry matter intake (DMI) and milk fat content, but lower lactose and milk urea content compared with those fed 40% forage diet. Moreover, nitrate supplementation had no significant effect on DMI and milk yield. Furthermore, the interactions showed that nitrate reduces DMI and milk fat independently of forage levels. Our findings showed that nitrate can increase ammonia concentration, pH, nitrite, and acetate while reducing the total volatile fatty acids concentration, propionate, and butyrate in the rumen. With increasing nitrate, methane emission was considerably decreased possibly due to the stimulated growth of Fibrobacteria, Proteobacteria, type II Methanotrophs, and Methanoperedense nitroreducens, especially with high forage level. Overall, nitrate supplementation could potentially increase methane oxidizing microorganisms without adversely affecting cattle performance.

2016 ◽  
Vol 56 (3) ◽  
pp. 641 ◽  
Author(s):  
Z. Durmic ◽  
P. J. Moate ◽  
J. L. Jacobs ◽  
J. Vadhanabhuti ◽  
P. E. Vercoe

A study was conducted to examine in vitro ruminal fermentation profiles and methane production of some alternative forage species (n = 10) in Australia. Extent of fermentation was assessed using an in vitro batch fermentation system, where total gas production, methane production, and concentrations in ruminal fluid of volatile fatty acids (VFA) and ammonia were measured. Forages varied in their fermentability, with highest total gas, methane, VFA and ammonia production recorded from selected samples of Brassica napus L. cv. Winfred. Lowest methane production (i.e. 30% less than that formed by the highest-producing one) was observed in Plantago lanceolata L. cv. Tonic and Cichorium intybus L. cv. Choice. Selected plants, including P. lanceolata L. cv. Tonic, Brassica rapa L. cv. Marco, Brassica napus L. cv. Hunter had reduced acetate : propionate ratio and/or ammonia concentration, along with relatively low methane production compared with other species tested, while overall fermentation was not affected. It was concluded that selected novel forages have some advantageous fermentability profiles in the rumen and, in particular, inhibit methane production. However, before these can be recommended as valuable supplementary feedstuffs for ruminants in Australia, further studies are needed to confirm these effects over a range of samples, conditions and in vivo.


2019 ◽  
Vol 32 (2) ◽  
pp. 126-138 ◽  
Author(s):  
Ricardo M A Pinho ◽  
Edson M Santos ◽  
Juliana S De Oliveira ◽  
Gleidson G P De Carvalho ◽  
Joyce P Alves ◽  
...  

Background: There is a comprehensive understanding of the role of dietary fiber as a nutrient and its function during digestion in cattle. On the other hand, the role of fiber digestion in goats has not received similar attention. Objective: To evaluate the effects of different ratios of forage neutral detergent fiber (fNDF) and non-fibrous carbohydrates (NFC) on ruminal fermentation products, and in vitro neutral detergent fiber (NDF) digestibility in goats. Methods: A 3 × 5 factorial arrangement in a completely randomized design with three fNDF levels (100, 190, and 290 g/kg) and five NFC levels (350, 400, 450, 500, and 550 g/kg) was used. The experiment was performed in vitro. Two ruminally fistulated goats were used as rumen liquid donors. Results: The ratios between fNDF and NFC affected all ruminal parameters (p<0.05). Increasing NFC levels in diets containing 100 and 290 g/kgfNDF resulted in linear increase (p<0.05) in ammonia concentration after 48 h fermentation. There was no adjustment of linear models (p>0.05) for pH values. Total volatile fatty acids (VFA) and their individual molar proportions were affected (p<0.05) at all fNDF and NFC levels. The NDF digestibility was not affected (p>0.05) by fNDF or NFC levels, except for diets containing 290 g/kg fNDF, which were fit to a quadratic model (p<0.05). Conclusion: The relationship between fNDF and NFC concentrations affect the fermentation end products and in vitro NDF digestibility. NFC plays a more consistent role than fNDF in the ruminal microbial ecosystem of goats during in vitro fermentation.Keywords: digestion, energy, microbial protein, physically effective fiber, rumen. Resumen Antecedentes: Aunque hay una amplia comprensión del papel que juega la fibra dietética como nutriente y su función durante la digestión en el ganado vacuno, el papel de la digestión de la fibra en las cabras no ha recibido una atención similar. Objetivo: Evaluar los efectos de diferentes proporciones de fibra detergente neutra proveniente del forraje (fNDF) y carbohidratos no fibrosos (NFC) sobre los productos de la fermentación ruminal y la digestibilidad in vitro de la fibra detergente neutra (NDF) en cabras. Métodos: Se utilizó un arreglo factorial de 3 × 5, distribuidos en un diseño completamente aleatorizado con tres niveles de fNDF (100, 190 y 290 g/kg) y cinco niveles de NFC (350, 400, 450, 500 y 550 g/kg). El experimento se realizó in vitro. Se utilizaron dos cabras fistuladas en rumen como donantes de líquido ruminal. Resultados: La relacion entre fNDF y NFC afectó todos los parámetros ruminales estudiados (p<0,05). El aumento de los niveles de NFC en dietas con 100 y 290 g/kg de fNDF resultó en aumento lineal (p<0,05) de la concentración de amoníaco después de 48 h de fermentación. No hubo ajuste de modelos lineales (p>0,05) para valores de pH. Los ácidos grasos volátiles totales y sus proporciones molares individuales se afectaron (p<0,05) en todos los niveles de fNDF y NFC. La digestibilidad de NDF no fue afectada (p>0,05) por los niveles de fNDF ni NFC, con excepción de las dietas con 290 g/kg fNDF, que se ajustaron a un modelo cuadrático (p<0,05). Conclusión: La relación entre las concentraciones de fNDF y NFC afecta los productos finales de fermentación y la digestibilidad in vitro de NDF. Los niveles de NFC juegan un papel más consistente que fNDF en el ecosistema microbiano ruminal de la cabra durante la fermentación in vitro.Palabras clave: digestión, energía, fibra físicamente efectiva, proteína microbiana, rumen. ResumoAntecedentes: Embora exista um compreensível entendimento do papel que a fibra dietética desempenha como nutriente e sua função durante a digestão em bovinos, o papel da digestão das fibras em caprinos não recebeu atenção semelhante. Objetivo: Avaliar os efeitos de diferentes relações da fibra em detergente neutro advindo de forragem (fNDF) e carboidratos não-fibrosos (NFC) sobre produtos da fermentação ruminal e digestibilidade in vitro da fibra em detergente neutro (NDF) em caprinos. Métodos: Utilizou-se um esquema fatorial de 3 × 5 distribuídos em um delineamento inteiramente casualizado com três níveis de fNDF (100, 190 e 290 g/kg) e cinco níveis de NFC (350, 400, 450, 500 e 550 g/kg). O experimento foi realizado in vitro. Duas cabras fistuladas no rúmen foram utilizadas como doadoras de líquido ruminal. Resultados: As relações entre fNDF e NFC impactaram todos os parâmetros ruminais estudados (p<0,05). O aumento dos níveis de NFC em dietas contendo 100 e 290 g/kg de fNDF resultou em um aumento linear (p<0,05) na concentração de amônia após 48 h de fermentação. Não houve ajuste de modelos lineares (p>0,05) para valores de pH. Os ácidos graxos voláteis totais e suas proporções molares individuais foram afetados (p<0,05) em todos os níveis de fNDF e NFC. A digestibilidade NDF não foi afetada (p>0,05) pelos níveis de fNDF e NFC, com exceção de dietas experimentais contendo 290 g/kg fNDF, que foram ajustadas a um modelo quadrático (p<0,05). Conclusão: A relação entre as concentrações de fNDF e NFC afeta os produtos finais de fermentação e a digestibilidade in vitro de NDF de dietas experimentais. Os níveis de NFC desempenham um papel mais consistente do que o fNDF no ecossistema microbiano ruminal de cabras durante a fermentação in vitro.Palavras-chave: digestão, energia, fibra fisicamente efetiva, proteína microbiana, rúmen.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Majid Sharifi ◽  
Akbar Taghizadeh ◽  
Ali Hosseinkhani ◽  
Hamid Mohammadzadeh ◽  
Valiollah Palangi ◽  
...  

Abstract Nitrate may reduce the ruminal methane emission by competing methanogenesis to achieve more hydrogen. For this purpose, twenty Holstein lactating cows were examined using a 2×2 factorial design in 4 groups for 60 days with two forage levels (40% and 60%) and supplemental nitrate 0% (F40 and F60) and 3.5% (F40N and F60N) of diet dry matter (DM). Then, the effect of nitrate and forage levels on cow performance, ruminal fermentation, methane emission, and metabolic hydrogen sink were evaluated. The nitrate supplementation did not significantly affect milk yield and ECM/DMI while, milk urea nitrogen was increased. Lowest quantity of milk vitamins (A and E) was observed in nitrate groups. The nitrate supplementation increased c9-C18:1, unsaturated fatty acids, and n-6/n-3 contents of the milk. Blood parameters were affected by nitrate supplementation. Blood met-Hb concentration was increased, while blood glucose was decreased in nitrate groups. High forage and nitrate fed animals (F60N) had higher ruminal acetate and lower propionate concentration, and higher acetate+butyrate to propionate ratio than other groups. Nitrite and NH3-N concentrations were higher in the rumen of nitrate fed animals. Nitrate supplementation inhibited gas volume and methane emission without affecting volatile fatty acids at 12 and 24 h of incubation. The H2 balance, H2 production and consumption, and recovery percentage were significantly lower in F60N group. In conclusion, nitrate supplementation can be employed as an alternative strategy for improving ruminal fermentation, milk quality and methane inhibition.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 919
Author(s):  
Verónica M. Merino ◽  
Lorena Leichtle ◽  
Oscar A. Balocchi ◽  
Francisco Lanuza ◽  
Julián Parga ◽  
...  

The aim was to determine the effect of the herbage allowance (HA) and supplement type (ST) on dry matter intake (DMI), milk production and composition, grazing behavior, rumen function, and blood metabolites of grazing dairy cows in the spring season. Experiment I: 64 Holstein Friesian dairy cows were distributed in a factorial design that tested two levels of daily HA (20 and 30 kg of dry matter (DM) per cow) and two ST (high moisture maize (HMM) and cracked wheat (CW)) distributed in two daily rations (3.5 kg DM/cow/day). Experiment II: four mid-lactation rumen cannulated cows, supplemented with either HMM or CW and managed with the two HAs, were distributed in a Latin square design of 4 × 4, for four 14-d periods to assess ruminal fermentation parameters. HA had no effect on milk production (averaging 23.6 kg/day) or milk fat and protein production (823 g/day and 800 g/day, respectively). Cows supplemented with CW had greater protein concentration (+1.2 g/kg). Herbage DMI averaged 14.17 kg DM/cow.day and total DMI averaged 17.67 kg DM/cow.day and did not differ between treatments. Grazing behavior activities (grazing, rumination, and idling times) and body condition score (BCS) were not affected by HA or ST. Milk and plasma urea concentration increased under the high HA (+0.68 mmol/L and +0.90 mmol/L, respectively). Cows supplemented with HMM had lower milk and plasma urea concentrations (0.72 mmol/L and 0.76 mmol/L less, respectively) and tended (p = 0.054) to have higher plasma β-hydroxybutyrate. Ruminal parameters did not differ between treatments.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 761
Author(s):  
Olinda Guerreiro ◽  
Susana P. Alves ◽  
Mónica Costa ◽  
Maria F. Duarte ◽  
Eliana Jerónimo ◽  
...  

Cistus ladanifer (rockrose) is a perennial shrub quite abundant in the Mediterranean region, and it is a rich source in secondary compounds such as condensed tannins (CTs). Condensed tannins from C. ladanifer were able to change the ruminal biohydrogenation (BH), increasing the t11–18:1 and c9,t11–18:2 production. However, the adequate conditions of the C. ladanifer CTs used to optimize the production of t11–18:1 and c9,t11–18:2 is not yet known. Thus, we tested the effect of increasing the doses of C. ladanifer CT extract (0, 25, 50, 75 and 100 g/kg dry matter (DM)) on in vitro rumen BH. Five in vitro batch incubations replicates were conducted using an oil supplemented high-concentrate substrate, incubated for 24 h with 6 mL of buffered ruminal fluid. Volatile fatty acids (VFAs) and long chain fatty acids (FA) were analyzed at 0 h and 24 h, and BH of c9–18:1, c9, c12–18:2 and c9, c12, c15–18:3, and BH products yield were computed. Increasing doses of C. ladanifer CTs led to a moderate linear decrease (p < 0.001) of the VFA production (a reduction of 27% with the highest dose compared to control). The disappearance of c9–18:1 and c9,c12–18:2 as well as the production of t11–18:1 and c9, t11:18:2 was not affected by increasing doses of C. ladanifer CTs, and only the disappearance of c9, c12, c15–18:3 suffered a mild linear decrease (a reduction of 24% with the highest dose compared to control). Nevertheless, increasing the C. ladanifer CT dose led to a strong depression of microbial odd and branched fatty acids and of dimethyl acetals production (less than 65% with the highest dose compared to control), which indicates that microbial growth was more inhibited than fermentative and biohydrogenation activities, in a possible adaptative response of microbial population to stress induced to CTs and polyunsaturated fatty acids. The ability of C. ladanifer to modulate the ruminal BH was not verified in the current in vitro experimental conditions, emphasizing the inconsistent BH response to CTs and highlighting the need to continue seeking the optimal conditions for using CTs to improve the fatty acid profile of ruminant fat.


2021 ◽  
Vol 1 (9) ◽  
pp. 68-74
Author(s):  
A. V. Golovin ◽  

In a scientific economic experiment conducted in the experimental farm «Klenovo-Chegodaevo» (Moscow) on three groups of Holsteinized black-and-white cows with a milk yield of 7000 kg of milk per lactation, 10 heads in each, it was found that the inclusion in the diet of cows of the experimental groups tested protected fats (hydrogenated and fractionated) in the amount of 300 g per head per day, contributed to the tendency for more intensive metabolic processes in the rumen due to a slight increase in the concentration of volatile fatty acids by 5,6–7,4% and an increase in the mass of microorganisms in the contents of the rumen by 5,4–14,4% (P≥0,05). At the same time, an increase in the concentration of metabolic energy in the dry matter of the cows ration from 10,7 to 11,0 MJ / kg in the period from 21 to 120 days of lactation, due to the inclusion of protected fats in the diet of cows from the experimental groups, contributed to an increase in milk yield 4% fat content for 100 days of the experiment by 9,7% and 11,0% (P≤0,05), compared with the control, as well as the production of milk fat and protein, respectively by 9,6–11,0% (P≤0,05 in the second case) and 7,4–8,3%, feed costs expressed in ME decreased by 4,9–5,2%.


2013 ◽  
Vol 64 (4) ◽  
pp. 409 ◽  
Author(s):  
Bidhyut Kumar Banik ◽  
Zoey Durmic ◽  
William Erskine ◽  
Phillip Nichols ◽  
Kioumars Ghamkhar ◽  
...  

Biserrula (Biserrula pelecinus L.) is an important annual pasture legume for the wheatbelt of southern Australia and has been found to have lower levels of methane output than other pasture legumes when fermented by rumen microbes. Thirty accessions of the biserrula core germplasm collection were grown in the glasshouse to examine intra-specific variability in in vitro rumen fermentation, including methane output. One biserrula cultivar (Casbah) was also grown at two field locations to confirm that low methanogenic potential was present in field-grown samples. All of the biserrula accessions had significantly reduced methane [range 0.5–8.4 mL/g dry matter (DM)] output compared with subterranean clover (28.4 mL/g DM) and red clover (36.1 mL/g DM). There was also significant variation in fermentability profiles (except for volatile fatty acids) among accessions of the core collection. Methanogenic potential exhibited 86% broad-sense heritability within the biserrula core collection. The anti-methanogenic and gas-suppressing effect of biserrula was also confirmed in samples grown in the field. In conclusion, biserrula showed variability in in vitro fermentation traits including reduced methane production compared with controls. This bioactivity of biserrula also persists in the field, indicating scope for further selection of biserrula as an elite methane-mitigating pasture.


1970 ◽  
Vol 46 (3) ◽  
pp. 325-335
Author(s):  
E. Maleki ◽  
G.Y. Meng ◽  
M. Faseleh Jahromi ◽  
R. Jorfi ◽  
A. Khoddami ◽  
...  

The objective of this study was to determine the effect of pomegranate (Punica granatum L.) seed oil (PSO) on gas and methane (CH4) production, ruminal fermentation and microbial populations under in vitro conditions. Three treatments consisting of a control diet containing 10 mg tallow (CON); the control diet with 5 mg PSO + 5 mg tallow (MPSO) and the control diet containing 10 mg PSO (HPSO) were compared. Ten mg of the experimental fat/oil samples were inserted into a gas-tight 100 mL plastic syringe containing 30 mL of an incubation inoculum and 250 mg of a basic substrate of a hay/concentrate (1/1, w/w) mixture. In vitro gas production was recorded over 0, 2, 4, 6, 8, 10, 12 and 24 h of incubation. After 24 hours, incubation was stopped, and methane production, pH, volatile fatty acids (VFAs) and microbial counts were measured in the inoculant. Gas production at 4, 6, 8, 10, 12 and 24 h incubation, metabolizable energy and in vitro organic matter disappearance increased linearly and quadratically as level of PSO increased. Furthermore, the 10 mg PSO (HPSO) decreased CH4 production by 21.0% compared with the control (CON) group. There were no significant differences in total and individual VFA concentrations between different levels of PSO, except for butyric acid. After 24 h of incubation, methanogenesis decreased in the HPSO compared with the MPSO and CON treatments. In addition, total bacteria and protozoa counts increased with rising PSO levels, while population methanogenesis declined significantly. These results suggested that PSO could reduce methane emissions, which might be beneficial to nutrient utilization and growth in ruminants.


2020 ◽  
Vol 87 (3) ◽  
pp. 334-340
Author(s):  
Elisa Manzocchi ◽  
Werner Hengartner ◽  
Michael Kreuzer ◽  
Katrin Giller

AbstractThis research paper addresses the hypotheses (1) that milk produced from hay-fed cows differs from that of silage-fed cows and (2) that silage type has an important impact, too. Four diets differing in forage type but with equal estimated milk production potential and a forage:concentrate ratio of 0.85 : 0.15 were compared regarding their effect on feed intake, milk yield and milk properties. The forages tested were hay, grass silage, conventional short-chopped and long-chopped maize silage subjected to a novel processing technology (Shredlage®). Twenty-four dairy cows were fed two of the four diets in two consecutive runs in an incomplete (4 × 2) Latin-square design (n = 12 per diet). Each experimental period lasted 22 d, with 12 d of adaptation and 10 d of sampling. During sampling, feed intake and milk yield were recorded daily, milk composition and coagulation properties were determined four times. The composition of the diet ingredients was analysed weekly. Data were analysed with a mixed model considering feed, period and their interaction as fixed effects. Stage of lactation, milk yield and milk composition from the pre-experimental period were used as covariates in the model. Dry matter intake was lower with the long-chopped processed maize silage compared to the other three groups. There were some diet differences in intakes of net energy for lactation and absorbable protein in the duodenum, but this did not result in changes in milk yield. The milk fat content was higher with the grassland-based diets compared to the maize silage diets. No treatment effect on milk acidity and rennet coagulation properties was observed. In conclusion, there were no indications for specific physico-chemical properties of milk from a hay-based diet, and maize processing technology was not of large effect either. Future investigations should focus on sensory differentiation of the milk produced with different forages.


2020 ◽  
pp. 1-9
Author(s):  
C. Wang ◽  
L. Han ◽  
G. W. Zhang ◽  
H. S. Du ◽  
Z. Z. Wu ◽  
...  

Abstract Coated copper sulphate (CCS) could be used as a Cu supplement in cows. To investigate the influences of copper sulphate (CS) and CCS on milk performance, nutrient digestion and rumen fermentation, fifty Holstein dairy cows were arranged in a randomised block design to five groups: control, CS addition (7·5 mg Cu/kg DM from CS) or CCS addition (5, 7·5 and 10 mg Cu/kg DM from CCS, respectively). When comparing Cu source at equal inclusion rates (7·5 mg/kg DM), cows receiving CCS addition had higher yields of fat-corrected milk, milk fat and protein; digestibility of DM, organic matter (OM) and neutral-detergent fibre (NDF); ruminal total volatile fatty acid (VFA) concentration; activities of carboxymethyl cellulase, cellobiase, pectinase and α-amylase; populations of Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes; and liver Cu content than cows receiving CS addition. Increasing CCS addition, DM intake was unchanged, yields of milk, milk fat and protein; feed efficiency; digestibility of DM, OM, NDF and acid-detergent fibre; ruminal total VFA concentration; acetate:propionate ratio; activity of cellulolytic enzyme; populations of total bacteria, protozoa and dominant cellulolytic bacteria; and concentrations of Cu in serum and liver increased linearly, but ruminal propionate percentage, ammonia-N concentration, α-amylase activity and populations of Prevotella ruminicola and Ruminobacter amylophilus decreased linearly. The results indicated that supplement of CS could be substituted with CCS and addition of CCS improved milk performance and nutrient digestion in dairy cows.


Sign in / Sign up

Export Citation Format

Share Document