scholarly journals Duplex Anti-Corrosion Protection of Steel Using a Combination of Hot-Dip Galvanising and Water-Soluble Paints

2021 ◽  
Vol 24 (3) ◽  
pp. 129-135
Author(s):  
Jaroslav Lozrt ◽  
Jiří Votava ◽  
Radim Šmak

Abstract The goal of this paper is an evaluation of research aimed at corrosion and mechanical resistance of the so-called duplex system applied to a steel sheet. This system consists of a metal coating applied by hot-dip galvanising, to which an acrylic, water-soluble paint is commonly applied (commonly available on the Czech market) using standard technology in an air stream. For the purposes of the corrosion resistance comparison, one set of test specimens is provided only with a hot-dip galvanised coating. The mechanical resistance of applied anti-corrosion protection was determined by means of a pull-off adhesion test (according to the ČSN EN ISO 4624 standard), as well as an indentation test (according to the ČSN EN ISO 1520 standard). The corrosion resistance tests were then conducted in a salt spray environment (according to the ČSN EN ISO 9227 standard) for the samples not damaged by mechanical tests. Based on the obtained results, in general, waterborne paints with high dry matter content, low specific gravity and high zinc phosphate content, which are applied in several thinner layers, can be recommended.

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 337
Author(s):  
Ewa Wierzbicka ◽  
Marta Mohedano ◽  
Endzhe Matykina ◽  
Raul Arrabal

REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) regulations demand for an expedient discovery of a Cr(VI)-free alternative corrosion protection for light alloys even though the green alternatives might never be as cheap as current harmful technologies. In the present work, flash- plasma electrolytic oxidation coatings (FPEO) with the process duration < 90 s are developed on AZ31B alloy in varied mixtures of silicate-, phosphate-, aluminate-, and fluoride-based alkaline electrolytes implementing current density and voltage limits. The overall evaluation of the coatings’ anticorrosion performance (electrochemical impedance spectroscopy (EIS), neutral salt spray test (NSST), paintability) shows that from nine optimized FPEO recipes, two (based on phosphate, fluoride, and aluminate or silicate mixtures) are found to be an adequate substitute for commercially used Cr(VI)-based conversion coating (CCC). The FPEO coatings with the best corrosion resistance consume a very low amount of energy (~1 kW h m−2 µm−1). It is also found that the lower the energy consumption of the FPEO process, the better the corrosion resistance of the resultant coating. The superb corrosion protection and a solid environmentally friendly outlook of PEO-based corrosion protection technology may facilitate the economic justification for industrial end-users of the current-consuming process as a replacement of the electroless CCC process.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 576
Author(s):  
Muslum Yunacti ◽  
Alexandre Mégret ◽  
Mariana Henriette Staia ◽  
Alex Montagne ◽  
Véronique Vitry

Conventional electroless nickel–boron deposits are produced using solutions that contain lead or thallium, which must be eliminated due to their toxicity. In this research, electroless nickel–boron deposits were produced in a stabilizer-free bath that does not include any toxic heavy metal. During processing, the plating rate increased from 10 to 14.5 µm/h by decreasing the concentration of the reducing agent, leading to increased bath stability. The thickness, composition, roughness, morphology, hardness, wear, and corrosion resistance of the deposits were characterized. The new deposit presents an excellent hardness of 933 ± 56 hv50, 866 ± 30 hk50, and 12 GPa from the instrumented indentation test (IIT), respectively, which are similar to that of hexavalent hard chromium coating. Moreover, by using both potentiodynamic polarization and salt spray tests it was shown that the coating presents higher corrosion resistance as compared to standard nickel-boron coatings. The new deposit exhibits properties close to those of the conventional electroless nickel–boron deposits. Therefore, it could replace them in any industrial applications.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6547
Author(s):  
Izabela Kunce ◽  
Agnieszka Królikowska ◽  
Leszek Komorowski

Powder coatings are widely applied for corrosion protection of steel, aluminum, and hot dip galvanized steel in a variety of corrosive environments. Powder coatings are subjected to a number of strict laboratory tests to determine their mechanical properties, corrosion resistance, and color stability. Among European quality certificates for powder coatings applied to galvanized steel, the most commonly recognized are GSB-ST and Qualisteelcoat certificates, which also refer to the EN 13438 standard. Certificates of quality for powder coatings are constantly updated according to the latest research results and experience of specialists operating in the field of corrosion protection. This paper presents an experimental evaluation of how the required length of selected accelerated corrosion tests can affect the final assessment of powder coatings. On the example of two powder painting systems: polyester as well as based on epoxy and polyester resins, the paper presents the influence of the time of accelerated corrosion tests: ISO 6270, ISO 9227 (Neutral Salt Spray and Acetic Acid Salt Spray), and ISO 3231 on the protective properties of the coatings. The results of damage assessment according to ISO 4628 have been correlated with the requirements of particular quality specifications. Additionally, based on FTIR (Fourier Transform Infrared Spectroscopy) and EIS (Electrochemical Impedance Spectroscopy) analyses, the influence of the applied corrosion tests on the degradation degree of the coatings studied has been presented. The paper aims to present a tests for those powder coating systems applied to facilities for which the main requirement is corrosion resistance rather than aesthetics.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gongwen Tang ◽  
Tingting Ren ◽  
Yi Wang ◽  
Zhishan Yan ◽  
Linrong Ma ◽  
...  

Purpose The purpose of this paper is to study the effect of the nano tube fillers on the corrosion protection properties of the self-curing epoxy (SEP) coatings. Design/methodology/approach The self-curing epoxy (SEP) resin was synthesized via a reaction between diisopropoxy-bis ethylacetoacetato titanate and the epoxy resin. Halloysite nanotubes (HNTs) was surface modified by grafting (3-glycidoxypropyl) trimethoxysilane to obtain modified HNTs (mHNTs). The HNTs and mHNTs are used as nano tube fillers for the SEP coating. The thermal stability of the coatings was assessed via thermo-gravimetric analysis. The field-emission scanning electron microscopy (SEM) was conducted to analyze the surfaces and cross sections of the coatings. The anticorrosive efficiencies of the coatings were investigated by electrochemical measurements and a neutral salt spray test. Findings The results demonstrated that the additions of HNTs and mHNTs have little effect on the thermal degradation temperature of the SEP coating. However, the addition of the nanotubes reduced the corrosion resistance of the SEP coating. Originality/value The SEP coating itself showed excellent corrosion resistance without any reinforcement particles and is hence promising for application in the heavy-duty anticorrosion field of heat exchangers.


Coatings ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 250 ◽  
Author(s):  
Pei-Ying Tsai ◽  
Tzu-En Chen ◽  
Yueh-Lien Lee

This work contributes to the development and characterization of the corrosion resistance and antifriction properties of high performance polyurethane (PU)/graphene (Gr) composite coating. In this study, PU composite coatings containing 0, 2, 4 and 8 wt.% of Gr were prepared and evaluated using various corrosion and mechanical tests, namely electrochemical impedance spectroscopy, salt spray tests, cross-cut tape tests and dynamic mechanical analysis. Antifriction properties of the coatings were evaluated using a tribometer with a ball-on-disc mode at room temperature. The corrosion resistance and adhesion property of the PU coatings were found to be enhanced by adding 4 and 8 wt.% of Gr. The coefficient of friction revealed that the antifriction properties of the PU/Gr composite coatings were 61% lower than those of the conventional coating when the Gr content was increased to 8 wt.%.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 89
Author(s):  
Wei Yuan ◽  
Qian Hu ◽  
Jiao Zhang ◽  
Feng Huang ◽  
Jing Liu

This study modified graphene oxide (GO) with hydrophilic octadecylamine (ODA) via covalent bonding to improve its dispersion in silicone-modified epoxy resin (SMER) coatings. The structural and physical properties of ODA-GO were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and contact angle tests. The ODA-GO composite materials were added to SMER coatings by physical mixing. FE-SEM, water absorption, and contact angle tests were used to evaluate the physical properties of the ODA-GO/SMER coatings, while salt spray, electrochemical impedance spectroscopy (EIS), and scanning Kelvin probe (SKP) methods were used to test the anticorrosive performance of ODA-GO/SMER composite coatings on Q235 steel substrates. It was found that ODA was successfully grafted onto the surfaces of GO. The resulting ODA-GO material exhibited good hydrophobicity and dispersion in SMER coatings. The anticorrosive properties of the ODA-GO/SMER coatings were significantly improved due to the increased interfacial adhesion between the nanosheets and SMER, lengthening of the corrosive solution diffusion path, and increased cathodic peeling resistance. The 1 wt.% ODA-GO/SMER coating provided the best corrosion resistance than SMER coatings with other amounts of ODA-GO (including no addition). After immersion in 3.5 wt.% NaCl solution for 28 days, the low-frequency end impedance value of the 1 wt.% ODA-GO/SMER coating remained high, at 6.2 × 108 Ω·cm2.


2021 ◽  
Vol 22 (9) ◽  
pp. 4706
Author(s):  
Shun-Yi Jian ◽  
Salim Levent Aktug ◽  
Hsuan-Ti Huang ◽  
Cheng-Jung Ho ◽  
Sung-Yen Lin ◽  
...  

Micro arc oxidation (MAO) is a prominent surface treatment to form bioceramic coating layers with beneficial physical, chemical, and biological properties on the metal substrates for biomaterial applications. In this study, MAO treatment has been performed to modify the surface characteristics of AZ31 Mg alloy to enhance the biocompatibility and corrosion resistance for implant applications by using an electrolytic mixture of Ca3(PO4)2 and C10H16N2O8 (EDTA) in the solutions. For this purpose, the calcium phosphate (Ca-P) containing thin film was successfully fabricated on the surface of the implant material. After in-vivo implantation into the rabbit bone for four weeks, the apparent growth of soft tissues and bone healing effects have been documented. The morphology, microstructure, chemical composition, and phase structures of the coating were identified by SEM, XPS, and XRD. The corrosion resistance of the coating was analyzed by polarization and salt spray test. The coatings consist of Ca-P compounds continuously have proliferation activity and show better corrosion resistance and lower roughness in comparison to mere MAO coated AZ31. The corrosion current density decreased to approximately 2.81 × 10−7 A/cm2 and roughness was reduced to 0.622 μm. Thus, based on the results, it was anticipated that the development of degradable materials and implants would be feasible using this method. This study aims to fabricate MAO coatings for orthopedic magnesium implants that can enhance bioactivity, biocompatibility, and prevent additional surgery and implant-related infections to be used in clinical applications.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 384
Author(s):  
Dariusz Ulbrich ◽  
Jakub Kowalczyk ◽  
Arkadiusz Stachowiak ◽  
Wojciech Sawczuk ◽  
Jaroslaw Selech

The article presents the influence of the applied method used for removing the varnish coat on the corrosion resistance of the car body sheet. The tests were carried out on samples prepared from factory-painted car body elements with pearlescent, metallized and acrylic varnish. Removal of the varnish coat was performed by sandpaper grinding, glass bead blasting, disc blaze rapid stripping, soda blasting and abrasive blasting with plastic granules. The average thickness of the factory-painted coating depending on the type of lacquer ranged from about 99 to 140 µm. On the other hand, after removing the varnish, the thickness of the protective zinc coating ranged from 2 to 12.7 µm. The highest values of the zinc coating were obtained for samples in which the varnish was removed by the method such as soda blasting and abrasive blasting with plastic granules. For these two methods of surface preparation, the damage to the zinc layer protecting the steel against corrosion is the smallest and the percentage of zinc in the surface layer ranges from 58% to 78%. The final stage of the research was to test the samples after removing the varnish coat in a two-hour exposure to the corrosive environment in a salt spray chamber. Samples with the surface prepared by grinding with sandpaper reached the level of surface rusting Ri 5, while in the case of soda blasting and the use of plastic granules, no corrosion centers were observed on the surface of the car body sheet.


1970 ◽  
Vol 75 (3) ◽  
pp. 517-521 ◽  
Author(s):  
D. I. H. Jones

SUMMARYThe effect of three levels of N fertilizer on the ensiling characteristics of S. 24 perennial ryegrass and S. 37 cocksfoot have been examined during first growth in two growing seasons. The effects of sucrose supplementation, inoculation with Lactobacillus plantarum and wilting were also examined in certain cuts. All silages were made in the laboratory using a small scale vacuum silage technique.The perennial ryegrass herbage was higher in water soluble carbohydrates than the cocksfoot, N fertilizers decreased soluble carbohydrates and dry-matter content in both species. Buffering capacity was not consistently different between grasses or between N levels.Herbage was cut at two stages of maturity in the first year. In the first cut (8 days before ear emergence), perennial ryegrass silages were well preserved irrespective of the amount of N applied to the grass. Cocksfoot silages were well preserved only when the lowest level of N fertilizer had been applied (50 kg/ha). Supplementation of cocksfoot with sucrose prior to ensiling markedly improved silage quality, but inoculation had no effect. In the second cut (26 days after ear emergence) the grasses were higher in drymatter content and showed a lower buffering capacity, but neither ryegrass nor cocksfoot silages were well preserved unless supplemented with sucrose prior to ensiling.In the second year of the experiment only one cut was taken (9 days after ear emergence). As in the previous year, silages made from herbage at a late stage of growth were poorly preserved. Wilting prior to ensiling resulted in well-preserved silages.It is concluded that the need for additives and wilting to ensure satisfactory preservation varies in relation to the variety of grass used and its stage of growth.


2015 ◽  
Vol 3 (8) ◽  
pp. 1667-1676 ◽  
Author(s):  
Jiadi Sun ◽  
Ye Zhu ◽  
Long Meng ◽  
Wei Wei ◽  
Yang Li ◽  
...  

Self-assembled nanoparticles loaded with bioactive agents were electrodeposited to provide the magnesium alloy with controlled release and corrosion resistance properties.


Sign in / Sign up

Export Citation Format

Share Document