Silicon Photomultiplier Gain Compensation Algorithm in Multidetector Measurements

2013 ◽  
Vol 20 (4) ◽  
pp. 655-666 ◽  
Author(s):  
Mateusz Baszczyk ◽  
Piotr Dorosz ◽  
Sebastian Głąb ◽  
Wojciech Kucewicz ◽  
Łukasz Mik ◽  
...  

Abstract The paper stresses the issue of strong temperature influence on the gain of a Silicon Photomultiplier (SiPM). High sensitivity of the detector to light (single photons) requires stable parameters during measurement, including gain. The paper presents a method of compensating the change of gain caused by temperature variations, by adjusting a suitable voltage bias provided by a precise power module. The methodology of the research takes in account applications with a large number of SiPMs (20 thousand), explains the challenges and presents the results of the gain stabilization algorithm.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jihwan Boo ◽  
Mark D. Hammig ◽  
Manhee Jeong

AbstractDual particle imaging, in which both neutrons and gamma-rays in the environment can be individually characterized, is particularly attractive for monitoring mixed radiation emitters such as special nuclear materials (SNM). Effective SNM localization and detection benefits from high instrument sensitivity so that real-time imaging or imaging with a limited number of acquired events is enabled. For portable applications, one also desires a dual particle imager (DPI) that is readily deployable. We have developed a hand-held type DPI equipped with a pixelated stilbene-silicon photomultiplier (SiPM) array module and low sampling-rate analog-to-digital converters (ADCs) processed via a multiplexed readout. The stilbene-SiPM array (12 × 12 pixels) is capable of effectively performing pulse shape discrimination (PSD) between gamma-ray and neutron events and neutron/gamma-ray source localization on the imaging plane, as demonstrated with 252Cf neutron/gamma and 137Cs gamma-ray sources. The low sampling rate ADCs connected to the stilbene-SiPM array module result in a compact instrument with high sensitivity that provides a gamma-ray image of a 137Cs source, producing 6.4 μR/h at 1 m, in less than 69 s. A neutron image for a 3.5 × 105 n/s 252Cf source can also be obtained in less than 6 min at 1 m from the center of the system. The instrument images successfully with field of view of 50° and provides angular resolution of 6.8°.


2012 ◽  
Vol 108 (10) ◽  
pp. 2641-2652 ◽  
Author(s):  
K. Heimonen ◽  
E.-V. Immonen ◽  
R. V. Frolov ◽  
I. Salmela ◽  
M. Juusola ◽  
...  

In dim light, scarcity of photons typically leads to poor vision. Nonetheless, many animals show visually guided behavior with dim environments. We investigated the signaling properties of photoreceptors of the dark active cockroach ( Periplaneta americana) using intracellular and whole-cell patch-clamp recordings to determine whether they show selective functional adaptations to dark. Expectedly, dark-adapted photoreceptors generated large and slow responses to single photons. However, when light adapted, responses of both phototransduction and the nontransductive membrane to white noise (WN)-modulated stimuli remained slow with corner frequencies ∼20 Hz. This promotes temporal integration of light inputs and maintains high sensitivity of vision. Adaptive changes in dynamics were limited to dim conditions. Characteristically, both step and frequency responses stayed effectively unchanged for intensities >1,000 photons/s/photoreceptor. A signal-to-noise ratio (SNR) of the light responses was transiently higher at frequencies <5 Hz for ∼5 s after light onset but deteriorated to a lower value upon longer stimulation. Naturalistic light stimuli, as opposed to WN, evoked markedly larger responses with higher SNRs at low frequencies. This allowed realistic estimates of information transfer rates, which saturated at ∼100 bits/s at low-light intensities. We found, therefore, selective adaptations beneficial for vision in dim environments in cockroach photoreceptors: large amplitude of single-photon responses, constant high level of temporal integration of light inputs, saturation of response properties at low intensities, and only transiently efficient encoding of light contrasts. The results also suggest that the sources of the large functional variability among different photoreceptors reside mostly in phototransduction processes and not in the properties of the nontransductive membrane.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5820
Author(s):  
Zhenzhou Deng ◽  
Yushan Deng ◽  
Guandong Chen

Positron emission tomography (PET) has a wide range of applications in the treatment and prevention of major diseases owing to its high sensitivity and excellent resolution. However, there is still much room for optimization in the readout circuit and fast pulse sampling to further improve the performance of the PET scanner. In this work, a LIGHTENING® PET detector using a 13 × 13 lutetium-yttrium oxyorthosilicate (LYSO) crystal array read out by a 6 × 6 silicon photomultiplier (SiPM) array was developed. A novel sampling method, referred to as the dual time interval (DTI) method, is therefore proposed to realize digital acquisition of fast scintillation pulse. A semi-cut light guide was designed, which greatly improves the resolution of the edge region of the crystal array. The obtained flood histogram shown that all the 13 × 13 crystal pixels can be clearly discriminated. The optimum operating conditions for the detector were obtained by comparing the flood histogram quality under different experimental conditions. An average energy resolution (FWHM) of 14.3% and coincidence timing resolution (FWHM) of 972 ps were measured. The experimental results demonstrated that the LIGHTENING® PET detector achieves extremely high resolution which is suitable for the development of a high performance time-of-flight PET scanner.


2019 ◽  
Vol 64 (3) ◽  
pp. 357-363 ◽  
Author(s):  
Taha Haddadifam ◽  
Mohammad Azim Karami

Abstract Digital silicon photomultiplier (dSiPM) is introduced for diffuse optical imaging (DOI) applications instead of conventional photomultiplier tubes and avalanche photodiodes (APDs) as a state-of-the-art detector. According to the low-level light regime in DOI applications, high sensitivity and high dynamic range (DR) image sensors are needed for DOI systems. dSiPM is proposed as a developing detector which can detect low-level lights. Also, an accurate equation is obtained for calculating the DR of dSiPMs. Different dSiPMs and the corresponding benefits are studied for DOI applications. Furthermore, a 120 dB DR dSiPM is chosen for use in DOI systems. It is shown that dSiPMs can be utilized in DOI configurations such as time domain (TD), frequency domain (FD) and continuous wave (CW) systems. Ultimately, by utilizing dSiPM in DOI systems, the DOI method can be used for thoracic imaging due to the high DR and signal-to-noise ratio (SNR) of the detector.


2020 ◽  
Vol 10 (14) ◽  
pp. 4753
Author(s):  
Amirhossein Sanaat ◽  
Habib Zaidi

The scintillation light distribution produced by photodetectors in positron emission tomography (PET) provides the depth of interaction (DOI) information required for high-resolution imaging. The goal of positioning techniques is to reverse the photodetector signal’s pattern map to the coordinates of the incident photon energy position. By considering the DOI information, monolithic crystals offer good spatial, energy, and timing resolution along with high sensitivity. In this work, a supervised deep neural network was used for the approximation of DOI and to assess through Monte Carlo (MC) simulations the performance on a small-animal PET scanner consisting of ten 50 × 50 × 10 mm3 continuous Lutetium-Yttrium Oxyorthosilicate doped with Cerium (LYSO: Ce) crystals and 12 × 12 silicon photomultiplier (SiPM) arrays. The scintillation position was predicted by a multilayer perceptron neural network with 256 units and 4 layers whose inputs were the number of fired pixels on the SiPM plane and the total deposited energy. A GEANT4 MC code was used to generate training and test datasets by altering the photons’ incident position, energy, and direction, as well as readout of the photodetector output. The calculated spatial resolutions in the X-Y plane and along the Z-axis were 0.96 and 1.02 mm, respectively. Our results demonstrated that using a multilayer perceptron (MLP)-based positioning algorithm in the detector modules, constituting the PET scanner, enhances the spatial resolution by approximately 18% while the absolute sensitivity remains constant. The proposed algorithm proved its ability to predict the DOI for depth under 7 mm with an error below 8.7%.


2017 ◽  
Vol 1 (1) ◽  
pp. 11-16
Author(s):  
Łukasz Mik ◽  
Wojciech Kucewicz

In the paper a measurement method of fluorescence intensity reduction (called photobleaching) caused by excitation light was presented. Intensity of fluorescence light was measured by silicon photomultiplier (SiPM) – sensor which allows single photons detection. It has more compact dimensions and lower bias voltage in comparison to photomultiplier tube, presently used in many laboratory devices. Standard photometric cuvettes with a capacity of 1.6 ml and optical path length of 10 mm were used for the measurements. Sodium fluoresceinate dissolved in 10 mM TRIS buffer at pH 8.5 was used as the fluorescent dye. The solution was tested at a concentration of 100 μg per ml with constant excitation light from LED source over the time of measurement.


2017 ◽  
Vol 2 (2) ◽  
pp. 141
Author(s):  
Dellia Yulita ◽  
Lazuardi Umar

PTC level sensor for overfill protection works based on the thermal resistance (Rw). The sensor cannot identify high-temperature fluid in the container and determine the pump switching status “ON” and “OFF”. This is due to the influence of the medium temperature on the Rw. Analysis is performed by observing the Rw value of crude palm oil (CPO) as a result of the storage temperature. The Rw value was obtained from the modeling of I (U) sensor curve of EPCOS B59050D1100 with temperature variations ranging from 20°C to 80°C. The modeled area is then determined using the isothermal curve and is resulted Rw value of 110.2K/W. The ambient temperature influence on Rw can be modeled after polynomial equation. Compare to the previous air measurement, the thermal resistance in CPO has 62.6% vary than in the air. This value can be used to determine the position of the level sensor switch safely. Keywords: level sensors, PTC, thermal resistance, CPO, isothermal


2017 ◽  
Vol 372 (1717) ◽  
pp. 20160072 ◽  
Author(s):  
Greg D. Field ◽  
Alapakkam P. Sampath

Human vision is exquisitely sensitive—a dark-adapted observer is capable of reliably detecting the absorption of a few quanta of light. Such sensitivity requires that the sensory receptors of the retina, rod photoreceptors, generate a reliable signal when single photons are absorbed. In addition, the retina must be able to extract this information and relay it to higher visual centres under conditions where very few rods signal single-photon responses while the majority generate only noise. Critical to signal transmission are mechanistic optimizations within rods and their dedicated retinal circuits that enhance the discriminability of single-photon responses by mitigating photoreceptor and synaptic noise. We describe behavioural experiments over the past century that have led to the appreciation of high sensitivity near absolute visual threshold. We further consider mechanisms within rod photoreceptors and dedicated rod circuits that act to extract single-photon responses from cellular noise. We highlight how these studies have shaped our understanding of brain function and point out several unresolved questions in the processing of light near the visual threshold. This article is part of the themed issue ‘Vision in dim light’.


Sign in / Sign up

Export Citation Format

Share Document