scholarly journals Towards Green and Smart Seaports: Renewable Energy and Automation Technologies for Bulk Cargo Loading Operations

2021 ◽  
Vol 25 (1) ◽  
pp. 650-665
Author(s):  
Robert Philipp ◽  
Gunnar Prause ◽  
Eunice O. Olaniyi ◽  
Florian Lemke

Abstract In 2018, 4.1 billion tonnes of freight and 437 million passengers passed through the 1200 European ports. This dimension of geographically concentrated activities is the rationale that ports are characterised by a high-energy demand and a high share of emissions. Driven by a growing awareness for a cleaner environment, a stronger focus on sustainability and intensified environmental regulations, ports are forced to take responsibility when it comes to environmental issues. As a response, in recent studies, the concept of ‘green ports’ emerged. Simultaneously, in the context of digitalisation, the term ‘smart ports’ has received growing attention in the latest scientific discussions, too. Since an important driver towards greener maritime operations is linked to digitalisation, we argue that digital efforts in ports should next to the automation of inherent logistics processes also contribute to reducing the emissions and energy demands. Previous studies have primarily concentrated on the automation of container handling operations. Hence, there exists a research gap concerning the automation of bulk cargo handling operations in ports. Thus, this study addresses the question of how to automate the dry bulk cargo loading operations in the frame of a green and smart port development. The developed case study refers to the seaport of Wismar, whereby the results show that the digitalisation and greener port operations can be successfully aligned. Overall, this study extends the discussion on green and smart port development, while it contributes to the scientific literature by proving that both conceptual ideas can be achieved in the operating business.

2020 ◽  
Vol 12 (18) ◽  
pp. 7507
Author(s):  
Carlo Iapige De Gaetani ◽  
Andrea Macchi ◽  
Pasquale Perri

The building sector plays a central role in addressing the problem of global energy consumption. Therefore, effective design measures need to be taken to ensure efficient usage and management of new structures. The challenging task for designers is to reduce energy demands while maintaining a high-quality indoor environment and low costs of construction and operations. This study proposes a methodological framework that enables decision-makers to resolve conflicts between energy demand and life cycle costs. A case study is analyzed to validate the proposed method, adopting different solutions for walls, roofs, floors, windows, window-to-wall ratios and geographical locations. Models are created on the basis of all the possible combinations between these elements, enriched by their thermal properties and construction/management costs. After the alternative models are defined, energy analyses are carried out for an estimation of consumption. By calculating the total cost of each model as the sum of construction, energy and maintenance costs, a joint analysis is carried out for variable life cycles. The obtained results from the proposed method confirm the importance of a preliminary assessment from both energy and cost points of view, and demonstrate the impact of considering different building life cycles on the choice of design alternatives.


2005 ◽  
Vol 288 (6) ◽  
pp. C1287-C1297 ◽  
Author(s):  
Chad R. Hancock ◽  
Edwin Janssen ◽  
Ronald L. Terjung

The production of AMP by adenylate kinase (AK) and subsequent deamination by AMP deaminase limits ADP accumulation during conditions of high-energy demand in skeletal muscle. The goal of this study was to investigate the consequences of AK deficiency (−/−) on adenine nucleotide management and whole muscle function at high-energy demands. To do this, we examined isometric tetanic contractile performance of the gastrocnemius-plantaris-soleus (GPS) muscle group in situ in AK1−/− mice and wild-type (WT) controls over a range of contraction frequencies (30–120 tetani/min). We found that AK1−/− muscle exhibited a diminished inosine 5′-monophosphate formation rate (14% of WT) and an inordinate accumulation of ADP (∼1.5 mM) at the highest energy demands, compared with WT controls. AK-deficient muscle exhibited similar initial contractile performance (521 ± 9 and 521 ± 10 g tension in WT and AK1−/− muscle, respectively), followed by a significant slowing of relaxation kinetics at the highest energy demands relative to WT controls. This is consistent with a depressed capacity to sequester calcium in the presence of high ADP. However, the overall pattern of fatigue in AK1−/− mice was similar to WT control muscle. Our findings directly demonstrate the importance of AMP formation and subsequent deamination in limiting ADP accumulation. Whole muscle contractile performance was, however, remarkably tolerant of ADP accumulation markedly in excess of what normally occurs in skeletal muscle.


2021 ◽  
Vol 6 (2) ◽  
pp. 03-17
Author(s):  
Gazal Dandia ◽  
◽  
Pratheek Sudhakaran ◽  
Chaitali Basu ◽  
◽  
...  

Introduction: High energy consumption by buildings is a great threat to the environment and one of the major causes of climate change. With a population of 1.4 billion people and one of the fastest-growing economies in the world, India is extremely vital for the future of global energy markets. The energy demand for construction activities continues to rise and it is responsible for over one-third of global final energy consumption. Currently, buildings in India account for 35% of total energy consumption and the value is growing by 8% annually. Around 11% of total energy consumption are attributed to the commercial sector. Energy-efficient retrofitting of the built environments created in recent decades is a pressing urban challenge. Presently, most energy-efficient retrofit projects focus mainly on the engineering aspects. In this paper, we evaluate various retrofitting options, such as passive architectural interventions, active technological interventions, or a combination of both, to create the optimum result for the selected building. Methods: Based on a literature study and case examples, we identified various energy-efficient retrofit measures, and then examined and evaluated those as applied to the case study of Awas Bhawan (Rajasthan Housing Board Headquarters), Jaipur, India. For the evaluation, we developed a simulation model using EQuest for each energy measure and calculated the resultant energy savings. Then, based on the cost of implementation and the cost of energy saved, we calculated the payback period. Finally, an optimum retrofit solution was formulated with account for the payback period and ease of installation. Results and discussion: The detailed analysis of various energy-efficient retrofit measures as applied to the case study indicates that the most feasible options for retrofit resulting in optimum energy savings with short payback periods include passive architecture measures and equipment upgrades.


2021 ◽  
Vol 13 (17) ◽  
pp. 9491
Author(s):  
Manuel Carpio ◽  
David Carrasco

The increase in energy consumption that occurs in the residential sector implies a higher consumption of natural resources and, therefore, an increase in pollution and a degradation of the ecosystem. An optimal use of materials in the thermal envelope, together with efficient measures in the passive architectural design process, translate into lower energy demands in residential buildings. The objective of this study is to analyse and compare, through simulating different models, the impact of the shape factor on energy demand and CO2 emissions depending on the type of construction solution used in the envelope in a cold oceanic climate in South Chile. Five models with different geometries were considered based on their relationship between exposed surface and volume. Additionally, three construction solutions were chosen so that their thermal transmittance gradually complied with the values required by thermal regulations according to the climatic zone considered. Other parameters were equally established for all simulations so that their comparison was objective. Ninety case studies were obtained. Research has shown that an appropriate design, considering a shape factor suitable below 0.767 for the type of cold oceanic climate, implies a decrease in energy demand, which increased when considering architectural designs in the envelope with high values of thermal resistance.


Author(s):  
Reza Baghaei Lakeh ◽  
Daniel Andrade ◽  
Kyle J. Miller ◽  
Bowen Du ◽  
Joshua Pham ◽  
...  

Decentralized water treatment consists of a variety of water treatment techniques for dwellings, industrial facilities, homes, and businesses independent of the power grid. According to the United States Geological Survey, brackish groundwater is abundant in the southwestern states including California; hence it can potentially be considered a new source for California’s water portfolio. Most of membrane-based desalination technologies (e.g. reverse osmosis) have high energy demand and cost. Using renewable energy (mostly solar photovoltaics) in concert with membrane-based water desalination can be utilized to develop decentralized and off-grid brackish water desalination systems especially for remote and rural regions. In this paper, the results of a case study on decentralized off-grid brackish water system have been presented and discussed. The system utilizes a high pressure pump that can provide a feed flow rate of 2.2 gpm of at 140 psi. The system is run by solar photovoltaic panels through a battery bank. The results of the study show that the system is capable of treating brackish water at a salt rejection rate of more than 97.5% and a recovery rate up to 80%.


2012 ◽  
Vol 1 (2) ◽  
pp. 96-109 ◽  
Author(s):  
Ahmed A. Medhat A. Fahim ◽  
Essam E. Khalil

This paper investigates the influence of Indoor Environmental Quality [IEQ] requirements associated with occupation regimes on the criterion of energy demands for Heating, Ventilating and Air-Conditioning (HVAC) central systems installed in Cairo, Egypt. This paper focuses on the effects of occupation rate profiles with IEQ thermal parameters such as air dry-bulb temperatures and local air velocities. It is applied as a case study “10-Stories Hostel of 6000 m2 built-up area” that is utilized by immigrant students that migrate to Cairo for their University studies. They are termed here in this work as Egyptian Citizens [EC]. The occupation rate schedules and operation profiles for each source of heat inside space shall be incorporated to simulate the reality. These profiles and schedules should be added to the local energy code as a guideline for designers. Although in this case study the obtained results from simulation program match the total actual energy bills, sometimes, with multi-use apartments additional factors. The effect of Effective Temperatures [ET*] (temperature for constant thermal sensations) is vital as it can lead to reduce the cooling capacity by increasing the room temperature against indoor relative humidity for the same comfort sensation. These two concepts will save on the project total energy demand, in addition to introducing new design criteria for acceptable indoor conditions.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2038 ◽  
Author(s):  
Khairulnadzmi Jamaluddin ◽  
Sharifah Rafidah Wan Alwi ◽  
Khaidzir Hamzah ◽  
Jiří Jaromír Klemeš

The energy and power sectors are critical sectors, especially as energy demands rise every year. Increasing energy demand will lead to an increase in fuel consumption and CO2 emissions. Improving the thermal efficiency of conventional power systems is one way to reduce fuel consumption and carbon emissions. The previous study has developed a new methodology called Trigeneration System Cascade Analysis (TriGenSCA) to optimise the sizing of power, heating, and cooling in a trigeneration system for a Total Site system. However, the method only considered a single period on heating and cooling demands. In industrial applications, there are also batches, apart from continuous plants. The multi-period is added in the analysis to meet the time constraints in batch plants. This paper proposes the development of an optimal trigeneration system based on the Pinch Analysis (PA) methodology by minimizing cooling, heating, and power requirements, taking into account energy variations in the total site energy system. The procedure involves seven steps, which include data extraction, identification of time slices, Problem Table Algorithm, Multiple Utility Problem Table Algorithm, Total Site Problem Table Algorithm, TriGenSCA, and Trigeneration Storage Cascade Table (TriGenSCT). An illustrative case study is constructed by considering the trigeneration Pressurized Water Reactor Nuclear Power Plant (PWR NPP) and four industrial plants in a Total Site system. Based on the case study, the base fuel of the trigeneration PWR NPP requires 14 t of Uranium-235 to an average demand load of 93 GWh/d. The results of trigeneration PWR NPP with and without the integration of the Total Site system is compared and proven that trigeneration PWR NPP with integration is a suitable technology that can save up to 0.2% of the equivalent annual cost and 1.4% of energy compared to trigeneration PWR NPP without integration.


Author(s):  
Pat Willmer

This chapter focuses on pollination by bats, or chiropterophily. Bats are classified as two distinct and separately evolved orders, Megachiroptera and Microchiroptera. They are primarily nocturnal, and as flying endothermic mammals have extremely high energy demands. Furthermore, their flower visits often require hovering for short periods; this increases their energy demand further, albeit not by much. However, having rather large body masses, in practice the bat species that visit blossoms for a major part of their diet are linked with some unusual and very high-reward flowers. The chapter first provides an overview of the bat’s feeding apparatus, sensory capacities such as olfaction, and foraging behavior and learning before discussing different types of bat-pollinated flowers.


Author(s):  
S. Okamoto

This paper describes a study that starts with an analysis of typical energy demand profiles in a hospital setting followed by a case study of a CCHP system. The CCHP idea is of an autonomous system for the combined generation of electrical, heating, and cooling energy in a hospital. The driving units are two high-efficiency gas engines that produce the electrical and heat energy. A gas engine meets the requirement for high electrical and heating energy demands; a natural gas-fuelled reciprocating engine is used to generate 735 kW of power. In our case, the electrical energy was used only in the hospital. A deficit in electricity can be covered by purchasing power from the public network. Generated steam drives three steam-fired absorption chillers and is delivered to individual heat consumers. This system can provide simultaneous heating and cooling. No technical obstacles were identified for implementing the CCHP. The typical patterns for driving units of CCHP were decided by the hourly energy demands in several seasons throughout the year. The average ratio between electric and thermal loads in the hospital is suitable for CCHP system operation. An analysis performed for a non-optimized CCHP system predicted a large potential for energy savings and CO2 reduction.


2020 ◽  
pp. jlr.TR120000618 ◽  
Author(s):  
ZHONGJIE FU ◽  
Timothy S Kern ◽  
Ann Hellström ◽  
Lois Smith

Photoreceptors have high energy-demands and a high density of mitochondria that produce adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS) of fuel substrates. Although glucose is the major fuel for central nervous system (CNS) brain neurons, in photoreceptors (also CNS), most glucose is not metabolized through OXPHOS but is instead metabolized into lactate by aerobic glycolysis. The major fuel sources for photoreceptor mitochondria remained unclear for almost six decades. Similar to other tissues (like heart and skeletal muscle) with high metabolic rates, photoreceptors were recently found to metabolize fatty acids (palmitate) through OXPHOS. Disruption of lipid entry into photoreceptors leads to extracellular lipid accumulation, suppressed glucose transporter expression, and a duel lipid/glucose fuel shortage. Modulation of lipid metabolism helps restore photoreceptor function. However, further elucidation of the types of lipids used as retinal energy sources, the metabolic interaction with other fuel pathways, as well as the crosstalk among retinal cells to provide energy to photoreceptors is not yet known. In this review, we will focus on the current understanding of photoreceptor energy demand and sources, and potential future investigations of photoreceptor metabolism.


Sign in / Sign up

Export Citation Format

Share Document