Characterization of mechanochemically synthesized lead selenide

2009 ◽  
Vol 63 (5) ◽  
Author(s):  
Marcela Achimovičová ◽  
Nina Daneu ◽  
Aleksander Rečnik ◽  
Juraj Ďurišin ◽  
Baláž Peter ◽  
...  

AbstractMechanochemical synthesis of lead selenide PbSe nanocrystals was performed by high-energy milling of lead and selenium powders in a planetary ball mill. The structure properties of synthesized lead selenide were characterized by XRD analysis that confirmed crystalline nature of PbSe nanocrystals. Calculated average size of PbSe crystallites was 37 nm. The methods of particle size distribution analysis, specific surface area measurement, SEM and TEM were used for the characterization of surface and morphology of PbSe nanocrystals. SEM analysis revealed agglomerates of PbSe particles. However, HRTEM analysis confirmed perfect stoichiometric PbSe cubes with NaCl structure as well. UV-VIS-NIR spectrophotometry was used to confirm the blue shift of the small particles occurring in the powder product obtained by the mechanochemical synthesis.

2012 ◽  
Vol 531-532 ◽  
pp. 254-257
Author(s):  
Sharifah Adzila ◽  
Iis Sopyan ◽  
Siti Farius ◽  
Nurfahana Wahab ◽  
Singh Ramesh

This work presents the wet mechanochemical synthesis of hydroxyapatite (HA) powder through two different milling mediums. The effect of milling mediums on powder properties was investigated. Two types of medium: water and ethanol were chosen with 370 rpm milling speed for 15 hours time. Characterization of synthesized powders was accomplished by X-ray diffraction (XRD) analysis. The green compacts were prepared and sintered in atmosphere condition at various temperatures ranging from 900oC - 1300oC. The mechanical and physical properties were evaluated under Vickers microhardness test and density measurement. Both of synthesis mediums yielded HA phases in the synthesized powders as detected by the peaks obtained in XRD analysis. Compacts synthesized in water medium (M1) showed a maximum density, 99% sintered at 1000oC and 1300oC. However, the hardness in water medium is closely similar to the ethanol medium as a function of sintering temperature where the maximum hardness was found in compacts synthesized in ethanol medium (M2) sintered at 1300oC (5.8GPa). The microstructure observed from SEM analysis was in line with the density obtained as the surface of sintered compacts synthesized in water medium (M1) contained less pores with large grain growth.


2019 ◽  
Vol 966 ◽  
pp. 308-313
Author(s):  
M.P. Izaak ◽  
H. Sitompul ◽  
Wisnu Ari Adi ◽  
Yohanes Edi Gunanto

Synthesis and characterization of α-Fe2O3 nanoparticles were obtained from extraction of ilmenite iron sand with coprecipitation method and to obtain α-Fe2O3 nanoparticles, high energy milling (HEM) was used. Surface morphology and identification of the elements contained in the sample were analyzed using scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). For phase analysis and crystal structure, X-ray diffractometer (XRD) was used. Moreover a vibrating magnetometer sample (VSM) was used to characterize its magnetic properties, while tunneling electron microscopy (TEM) was used for particle size characterization. Ilmenite-type iron sand has a diverse particle shape with a size of more than 100 μm with ilmenite (FeTiO3) mineral content of about 64.7%. The results of extraction using coprecipitation method with sintering 750 °C, obtained hematite α-Fe2O3 material which has not been saturated to an external magnetic field of 1 tesla, the magnetic remanent value (Mr) is about 0.8 emu/g and the coercivity field value is Hc around 773 Oe. The average size of hematite α-Fe2O3 particles after being milled 50 hours is between 15-30 nm with a cube-like shape.


2014 ◽  
Vol 1036 ◽  
pp. 164-167 ◽  
Author(s):  
Grzegorz Moskal ◽  
Lucjan Swadźba ◽  
Wacław Supernak ◽  
Marta Mikuśkiewicz ◽  
Adrian Mościcki ◽  
...  

Characterization of microstructure of silicide coatings obtained during diffusion process of pack cementation type was showed in this article. The basic materials were pure Mo sheet and TZM molybdenum alloys as well. The coatings were deposited in out of pack process with three different times of exposure. The temperature of deposition process was constant. In first step the phases compositions of coatings was described by XRD analysis. In each cases the MoSi2 phase was obtained on top surface of the coatings. The morphology of the coatings was very similar as well. All types of coatings were characterized by network of cracks on top surface of the coatings. There was no influence of depositions time on phases constituent and coatings topography. LM and SEM analysis revealed that internal coatings morphology was very similar in all cases. Basic differences was related to the thickness of coatings. All coatings were good quality without deep cracks. Microstructure was a columnar-like type without pores and voids.


2012 ◽  
Vol 610-613 ◽  
pp. 3247-3251 ◽  
Author(s):  
Xian Guang Zeng ◽  
Jia Zhuang ◽  
Min Gong ◽  
Xing Wen Zheng ◽  
Ming Tian Li

A new hydrothermal method was introduced to prepare TiO2 films. The films were prepared by using tetrabutyl titanate as precursor, toluene as solvent and hydrochloric acid as the inhibitor via a facile hydrothermal method. XRD, SEM, AFM, and TG-DSC were used to characterize phase structure and morphology of TiO2 thin films. XRD analysis showed that crystal phase of as- prepared films were anatase entirely,and its average size was 9 nm. AFM and SEM analysis indicated that films had nanocrystallines,and it was homogenous,dense and crack- free. Photocatalytic properties of TiO2 film were estimated by degradation of methylene blue . The result shows that the degradation rate of 40mL methylene blue solution with initial concentration 10 mg/L reaches to 52.8 % after irradiated for 120 min under 35W ultraviolet lamp ,and as-prepared TiO2 film has better photocatalytic property.


2017 ◽  
Vol 888 ◽  
pp. 96-102
Author(s):  
Shafiza Afzan Sharif ◽  
Julie Juliewatty Mohamed ◽  
Hasmaliza Mohamed ◽  
Zainal Arifin Ahmad ◽  
Wan Azhar Wan Yusoff

In this work, the piezoelectric material system of Pb (Zr0.52Ti0.48)O3 ceramics were synthesized by conventional solid state via high energy planetary mill reaction. This process were chosen in order to skip the calcinations and implement a single firing process which very effective to reduce the possibility of PbO loss. The effect of sintering parameters on structural behavior of pure PZT ceramic was discussed in detail. Comprehensive studies have been carried out in order get optimum parameter for sintering process, thus improved the performance of the pure PZT ceramics. Grain size properties of Pb (Zr0.52Ti0.48)O3 ceramics increased with increasing the sintering temperature and duration. However longer sintering condition (1200 °C, 3 hours) causes excessive PbO loss which leads to presence new phases in XRD analysis, promote grain growth behavior with inhomogenous microstructure and tend to have more pores.


2013 ◽  
Vol 587 ◽  
pp. 239-244 ◽  
Author(s):  
Kunjalukkal Padmanabhan Sanosh ◽  
Francesca Gervaso ◽  
Alessandro Sannino ◽  
Antonio Licciulli

In the present work Collagen/Hydroxyapatite microsphere (Col/mHA) scaffold with a multiscale porosity was prepared. Col/mHA composite scaffold was prepared by freeze-drying/dehydrothermal crosslinking method. The HA microspheres (mHA) were obtained by spray drying of nanohydroxyapatite slurry prepared by precipitation technique. XRD analysis revealed that the microspheres were composed only of pure HA phase and EDS analysis revealed that Ca/P ratio was 1.69. The obtained microspheres had an average diameter 6 microns, specific surface area of 40 m2/g by BET analysis and BJH analysis shows meso porous structure having an average pore diameter 16nm. SEM analysis shows that the obtained Col/mHA scaffold had a macro porosity ranging from micron to 200 microns with meso porous mHA embedded in the collagen matrix.


MRS Advances ◽  
2016 ◽  
Vol 1 (32) ◽  
pp. 2303-2308 ◽  
Author(s):  
Alberto Delgado ◽  
Jorge A. Catalan ◽  
Hisato Yamaguchi ◽  
Claudia Narvaez Villarrubia ◽  
Aditya D. Mohite ◽  
...  

ABSTRACTIn this work, we have explored the prospects of MoS2 and WS2, both of which are semiconducting 2D materials, for potential composite applications. In order to form 2D materials composites we have to first disperse them chemically in solution. MoS2 and WS2 powders were oversaturated in N-Methyl-2-pyrrolidone (NMP) solution at 37.5 mg/mL and sonicated at room temperature (RT) for sonication times ranging from 30 minutes to close to 24 hours. After solution processing, the samples with the 2D flakes were transferred to an Isopropyl Alcohol (IPA) bath for particle size distribution analysis. We have observed significant changes in particle size distribution spanning two orders of magnitude as a function of the sonication conditions. Specifically, the observed changes in particle size distribution for MoS2 and WS2 powders ranged from 44 microns down to 0.409 microns, and 148 microns down to 0.409, respectively, as compared to the untreated materials. Structural analysis was conducted using the SEM and X-Ray diffraction. The structural analysis using the SEM revealed morphological signatures between the two materials, where the MoS2 flakes had a randomly oriented distribution with occasional triangular flakes. In the case of the WS2, regardless of the sonication conditions, the WS2 flakes seemed to have a characteristic 120° angular distribution at the vertices, representing a rhombus with concave edges. The XRD analysis showed a minute shift in the characteristic peaks that maybe due to strain-induced effects as a result of the solution processing. Optical characterization of the materials was also conducted using Raman Spectroscopy to validate the average layer number resulting from the solution dispersions and the spatial and compositional uniformity of the two material samples.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012092
Author(s):  
Suffi Irni Alias ◽  
Banjuraizah Johar ◽  
Syed Nuzul Fadzli Adam ◽  
Mustaffa Ali Azhar Taib ◽  
Fatin Fatini Othman ◽  
...  

Abstract The porcelain formulation containing percentages of treated FGD sludge waste from 5% up to 15% in replacement of feldspar were prepared. The porcelain mixture formulation were mixed by high energy planatery mill at speed 300 rpm for 1 hours. The powder were compacted by using hydraulic press and sintered at temperature 1200 °C for 3 hours. The sintered samples were characterized using X-ray fluorescene (XRF), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) and Thermogravimetry/Differential scanning calorimetry (TGA/DCS). The primary effect concerning the addition of treated FGD sludge was the change of intensity composition (gypsum and anhydrate) in porcelain formulation. The XRD analysis has shown that the main component in sludge waste were gypsum and anhydrate.


2019 ◽  
Vol 22 ◽  
pp. 39-47 ◽  
Author(s):  
Fadhéla Otmane ◽  
Salim Triaa ◽  
A. Maali ◽  
B. Rekioua

This study reports on the elaboration and characterization of bulk nanocomposites samples obtained by dispersion of metallic powders at the nanoscale as reinforcements in a polymer matrix. Elemental Fe powders were successfully nanostructured via high-energy ball milling. Structural characterization of the produced powders was conducted using X-Ray Diffraction (XRD) analysis and Scanning Electron Microscopy (SEM). The Halder-Wagner approach was adopted to determine the powder’s average grain size, internal strain, lattice parameters and the mixing factors. Structural parameters evolution and morphological changes according to milling progression are discussed. Bulk nanocomposites samples were shaped in a home moulder by dispersion of coarse Fe and nanostructured Fe powders in a continuous matrix of commercial epoxy resin. The obtained bulk samples match the metallic X-band wave-guide WR-90 dimensions used for electromagnetic characterization. The two-port Sij scattering parameters were measured via an Agilent 8791 ES network analyzer. The measured scattering parameters served to calculate the loss factor of samples and to extract the dielectric permittivity via the Nicholson-Ross-Weir conversion. Spectra evolution of the scattering parameters, the loss factor and the dielectric constant for epoxy resin with coarse Fe and nanostructured Fe reinforcements are commented.


2019 ◽  
Vol 19 (11) ◽  
pp. 6987-6994
Author(s):  
Ranjith Balu ◽  
Suresh Sagadevan ◽  
Arivuoli Dakshanamoorthy

A cost effective, facile hydrothermal method was used for the synthesis of ZnS/graphene (G) nano-composites. The XRD analysis clearly confirmed the presence of cubic sphalerite structure of ZnS which maintained its structure both in pure and composite materials matrix. The spectroscopic investigations like FTIR and FT-Raman analysis, and optical studies of the ZnS and ZnS/G nanocomposite were also carried out. The thermal behaviour of ZnS and ZnS/G nanocomposite showed that ZnS/G have higher thermal stability. The SEM analysis showed the spherical nature of ZnS nanoparticles covered over the surface of the graphene sheets and elemental composition of the GO, ZnS and ZnS/G nanocomposite was analyzed by EDAX analysis. The electrochemical properties of the prepared nanocomposite were investigated using cyclic voltammetry and galvanostatic charge discharge techniques. The specific capacitance of ZnS and ZnS/G nanocomposite was found to be 129.67, 315.1, respectively, at 5 mV/s scan rate. The obtained results are compared with reported results and the results indicate the possibility that, the synthesized sample have a good potential to be used as an electrode materials for high energy super capacitor applications.


Sign in / Sign up

Export Citation Format

Share Document