Biosynthesis of silver nanoparticles by natural precursor from clove and their antimicrobial activity

Biologia ◽  
2013 ◽  
Vol 68 (6) ◽  
Author(s):  
Harpreet Kaur ◽  
Simerjit Kaur ◽  
Minni Singh

AbstractSilver nanoparticles (AgNPs) have attracted the attention of researchers because of their unique properties and applications in various fields, such as medicine, catalysis, textile engineering, and pollution treatment. The green synthesis of AgNPs has many advantages, such as less time requirement, highly stable AgNPs, better control over crystal growth, morphology, ease for scale up, and economic viability. Syzygium aromaticum (clove) was used for the extracellular biosynthesis of AgNPs. Eugenols are the active biomolecules present in clove, responsible for the bioreduction of AgNO3 (Ag+) leading to the formation and capping of AgNPs (Ag0). One molecule of eugenol releases two electrons and these two electrons will be taken by 2 Ag+ ions and these will get reduced to 2 Ag0. The synthesis of AgNPs was confirmed by the appearance of brown colour. The synthesized AgNPs were characterised by various techniques, such as UV-VIS spectroscopy, transmission electron microscopy, X-ray diffraction and Fourier transformed infrared spectroscopy. The synthesised AgNPs have λ max of 440 nm. It was evaluated that the AgNPs were biphasic in nature (cubic + hexagonal) with an average size of 50.0 nm. The synthesized AgNPs showed significant antimicrobial activity against Bacillus cereus NCDC 240 as they are nano-sized and have high surface area to volume ratio. AgNPs inhibit the growth of bacteria by various ways, such as by disrupting the cell membrane of bacteria, uncoupling the oxidative phosphorylation, inhibiting the DNA replication, forming free radicals and affecting the cellular signalling of bacteria leading to cell death.

2018 ◽  
Author(s):  
Omar Labban

Given its high surface area to volume ratio and desirable mass transfer characteristics, the hollow fibermodule configuration has been central to the development of RO and UF technologies over the past fivedecades. Recent studies have demonstrated the development of a novel class of low-pressure nanofiltration(NF) hollow fiber membranes with great promise for scale-up implementation. Further progress on large-scaledeployment, however, has been restrained by the lack of an accurate predictive model, to guide module designand operation. Earlier models targeting hollow fiber modules are only suitable for RO or UF. In this work,we propose a new modeling approach suitable for NF based on the implementation of mass and momentumbalances, coupled with a validated membrane transport model based on the extended Nernst-Planck equationto predict module performance at the system-level. Modeling results are validated with respect to syntheticseawater experiments reported in an earlier work. A preliminary module design is proposed, and parametricstudies are employed to investigate the effect of varying key system parameters and elucidate the tradeoffsavailable during design. The model has significant implications for low-pressure nanofiltration, as well ashollow fiber NF module design and operation.


MRS Advances ◽  
2020 ◽  
Vol 5 (16) ◽  
pp. 805-813
Author(s):  
Jousen A. Merced-Colón ◽  
David Medina-Suarez ◽  
Gabriela M. Mercado-Guzmán ◽  
Sonia J. Bailón

ABSTRACTSilver nanoparticles (Ag NPs) have unique optical, electrical, and thermal properties and are being incorporated into products that range from photovoltaics to biological and chemical sensors. The production of silver nanoparticles has been increasing worldwide in the nanotechnology industry due to the variety of applications and are very likely to reach aquatic ecosystems damaging them. Due to their small size and high surface area to volume ratio of NPs, they can strongly interact with life cells and cause damage to tested animals. Based on the mentioned previously, it is necessary to evaluate the silver nanoparticle nanotoxicity in aquatic ecosystems to prevent possible ingestion or transfer to humans. Also, the research will benefit aquatic systems due to less pollution around aquatic organisms. The objectives of this research included: i) production and characterization of stable silver nanoparticles in water, ii) characterizing the optical properties by UV-Vis spectroscopy and morphology by HR-TEM and; iii) evaluate the toxicity of silver nanoparticles in aquatic organisms, i.e Artemia salina. Results obtained evidenced that Ag NPs showed an intense absorption peak at 448 nm. This broad peak is due to the phenomenon called surface plasmon resonance (SPR) that is responsible for a variety of phenomena, including nanoscale optical focusing, negative refraction, and surface-enhanced Raman scattering. HR-TEM measurements evidenced the spherical form of the nanoparticles and its small size at around 12-20 nm. In addition, Electron Diffraction analyses suggested the composition of the nanoparticle, which contained only Ag0. The toxicity assays were evaluated using different concentrations of purified Ag NPs. During the cytotoxicity assay, it was demonstrated that Ag NPs were not toxic to Artemia salina after 24 and 48 hours of exposure. However, silver (as silver nitrate) evidenced high toxicity to Artemia salina at larval stage.


2018 ◽  
Vol 7 (3) ◽  
pp. 1570
Author(s):  
Nguyen Phung Anh ◽  
Truong Thi Ai Mi ◽  
Duong Huynh Thanh Linh ◽  
Nguyen Thi Thuy Van ◽  
Hoang Tien Cuong ◽  
...  

A rapid way of synthesizing silver nanoparticles (AgNPs) by treating Ag+ ions with a green Fortunella Japonica (F.J.) extract as a combined reducing and stabilizing agent was investigated. The reaction solutions were monitored using UV-Vis spectroscopy, the size and shape of crystals were determined by scanning electron microscopy and transmission electron microscopy, the crystalline phases of AgNPs were presented by X–ray diffraction, and the relation of nanoparticles with Fortunella Japonica extract was confirmed using fourier transform infrared spectroscopy. The results indicated that no formation of AgNPs had taken place in the dark during 24 hours at room temperature and 40 oC. Meanwhile, it was found that the rate of AgNPs formation increased rapidly under the sunlight. The effects of the synthesis factors on the AgNPs formation were investigated. The suitable conditions for the synthesis of AgNPs using F.J. extract were determined as follows: F.J. extract was mixed with AgNO3 1.75 mM solution with the volume ratio of 3.5 AgNO3 solution/1.5 F.J. Extract, stirred 300 rpm for 150 minutes at 40 oC under sunlight illumination. At these conditions, AgNPs showed high crystalline structure with the average size of 15.9 nm. The antibacterial activity of silver nanoparticles was determined by agar well diffusion method against E. coli and B. subtilis bacteria. The green synthesized AgNPs performed high antibacterial activity against both bacteria.  


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1604 ◽  
Author(s):  
Masood Hussain ◽  
Ayman Nafady ◽  
Sirajuddin ◽  
Ahmet Avcı ◽  
Erol Pehlivan ◽  
...  

We report a novel, simple, efficient, and green protocol for biogenic synthesis of silver nanoparticles (AgNPs) in aqueous solution using clove (Syzygium aromaticum) extract as a reducing and protecting agent. Ultraviolet-visible (UV-Vis) spectroscopy was employed to monitor the localized surface plasmon resonance (LSPR) band of clove extract-derived AgNPs prepared under various conditions. Fourier-transform infrared (FTIR) spectroscopy analysis provided information about the surface interaction of the clove extract with the AgNPs. Ultrahigh-resolution transmission electron microscopy (UHRTEM) results confirmed the formation of spherical, uniformly distributed clove extract-capped AgNPs with sizes in the range of 2–20 nm (average size: 14.4 ± 2 nm). Powder X-ray diffractometry analysis (PXRD) illustrated the formation of pure crystalline AgNPs. These AgNPs were tested as a colorimetric sensor to detect trace amounts of vinclozolin (VIN) by UV-Vis spectroscopy for the first time. The AgNP-based sensor demonstrated very sensitive and selective colorimetric detection of VIN, in the range of 2–16 µM (R2 = 0.997). The developed sensor was green, simple, sensitive, selective, economical, and novel, and could detect trace amounts of VIN with limit of detection (LOD) = 21 nM. Importantly, the sensor was successfully employed for the determination of VIN in real water samples collected from various areas in Turkey.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hai Zhu ◽  
Ke-Jun Wu ◽  
Chao-Hong He

Mesoporous silica supported nanocatalysts have shown great potential in industrial processes due to their unique properties, such as high surface area, large pore volume, good chemomechanical stability and so on. Controllable and tunable synthesis of supported nanocatalysts is a crucial problem. Continuous synthesis of supported nanoparticles has been reported to get uniformly dispersed nanomaterials. Here, a method for continuous synthesis of uniformly dispersed mesoporous SBA-15 supported silver nanoparticles in a coiled flow inverter (CFI) microreactor is described. Compared to Ag/SBA-15 synthesized in the conventional batch reactor and Ag synthesized in continuous flow, mesoporous silica nanocatalysts synthesized in continuous flow are found to have smaller average size (7–11 nm) and narrower size distribution. The addition of capping agents can effectively change the characteristic of catalysts. Moreover, two kinds of support with different surface area and pore size have been added into the continuous synthesis. This method can provide further understandings for the synthesis of uniformly dispersed supported nanocatalysts in continuous flow, especially for mesoporous nanomaterials, which provides the possibilities of large-scale yield process of supported nanocatalysts in industry.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1962
Author(s):  
Mahboubeh Nabavinia ◽  
Baishali Kanjilal ◽  
Noahiro Fujinuma ◽  
Amos Mugweru ◽  
Iman Noshadi

To address the issue of global warming and climate change issues, recent research efforts have highlighted opportunities for capturing and electrochemically converting carbon dioxide (CO2). Despite metal doped polymers receiving widespread attention in this respect, the structures hitherto reported lack in ease of synthesis with scale up feasibility. In this study, a series of mesoporous metal-doped polymers (MRFs) with tunable metal functionality and hierarchical porosity were successfully synthesized using a one-step copolymerization of resorcinol and formaldehyde with Polyethyleneimine (PEI) under solvothermal conditions. The effect of PEI and metal doping concentrations were observed on physical properties and adsorption results. The results confirmed the role of PEI on the mesoporosity of the polymer networks and high surface area in addition to enhanced CO2 capture capacity. The resulting Cobalt doped material shows excellent thermal stability and promising CO2 capture performance, with equilibrium adsorption of 2.3 mmol CO2/g at 0 °C and 1 bar for at a surface area 675.62 m2/g. This mesoporous polymer, with its ease of synthesis is a promising candidate for promising for CO2 capture and possible subsequent electrochemical conversion.


2021 ◽  
Vol 22 (12) ◽  
pp. 6357
Author(s):  
Kinga Halicka ◽  
Joanna Cabaj

Sensors and biosensors have found applications in many areas, e.g., in medicine and clinical diagnostics, or in environmental monitoring. To expand this field, nanotechnology has been employed in the construction of sensing platforms. Because of their properties, such as high surface area to volume ratio, nanofibers (NFs) have been studied and used to develop sensors with higher loading capacity, better sensitivity, and faster response time. They also allow to miniaturize designed platforms. One of the most commonly used techniques of the fabrication of NFs is electrospinning. Electrospun NFs can be used in different types of sensors and biosensors. This review presents recent studies concerning electrospun nanofiber-based electrochemical and optical sensing platforms for the detection of various medically and environmentally relevant compounds, including glucose, drugs, microorganisms, and toxic metal ions.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-26 ◽  
Author(s):  
Helge Skarphagen ◽  
David Banks ◽  
Bjørn S. Frengstad ◽  
Harald Gether

Borehole thermal energy storage (BTES) exploits the high volumetric heat capacity of rock-forming minerals and pore water to store large quantities of heat (or cold) on a seasonal basis in the geological environment. The BTES is a volume of rock or sediment accessed via an array of borehole heat exchangers (BHE). Even well-designed BTES arrays will lose a significant quantity of heat to the adjacent and subjacent rocks/sediments and to the surface; both theoretical calculations and empirical observations suggest that seasonal thermal recovery factors in excess of 50% are difficult to obtain. Storage efficiency may be dramatically reduced in cases where (i) natural groundwater advection through the BTES removes stored heat, (ii) extensive free convection cells (thermosiphons) are allowed to form, and (iii) poor BTES design results in a high surface area/volume ratio of the array shape, allowing high conductive heat losses. The most efficient array shape will typically be a cylinder with similar dimensions of diameter and depth, preferably with an insulated top surface. Despite the potential for moderate thermal recovery, the sheer volume of thermal storage that the natural geological environment offers can still make BTES a very attractive strategy for seasonal thermal energy storage within a “smart” district heat network, especially when coupled with more efficient surficial engineered dynamic thermal energy stores (DTES).


2008 ◽  
Vol 72 (1) ◽  
pp. 85-89 ◽  
Author(s):  
J. R. Leake ◽  
A. L. Duran ◽  
K. E. Hardy ◽  
I. Johnson ◽  
D. J. Beerling ◽  
...  

AbstractBiological weathering is a function of biotic energy expenditure. Growth and metabolism of organisms generates acids and chelators, selectively absorbs nutrient ions, and applies turgor pressure and other physical forces which, in concert, chemically and physically alter minerals. In unsaturated soil environments, plant roots normally form symbiotic mycorrhizal associations with fungi. The plants provide photosynthate-carbohydrate-energy to the fungi in return for nutrients absorbed from the soil and released from minerals. In ectomycorrhiza, one of the two major types of mycorrhiza of trees, roots are sheathed in fungus, and 15—30% of the net photosynthate of the plants passes through these fungi into the soil and virtually all of the water and nutrients taken up by the plants are supplied through the fungi. Here we show that ectomycorrhizal fungi actively forage for minerals and act as biosensors that discriminate between different grain sizes (53—90 μm, 500—1000 μm) and different minerals (apatite, biotite, quartz) to favour grains with a high surface-area to volume ratio and minerals with the highest P content. Growth and carbon allocation of the fungi is preferentially directed to intensively interact with these selected minerals to maximize resource foraging.


Sign in / Sign up

Export Citation Format

Share Document