scholarly journals Estimation of rolling bearing life with damage curve approach

2011 ◽  
Vol 18 (3) ◽  
pp. 66-70 ◽  
Author(s):  
H. Mehdigholi ◽  
H. Rafsanjani ◽  
Behzad Mehdi

Estimation of rolling bearing life with damage curve approach The ability to determine the bearing life time is one of the main purposes in maintenance of rotating machineries. Because of reliability, cost and productivity, the bearing life time prognostic is important. In this paper, a stiffness-based prognostic model for bearing systems is discussed. According to presumed model of bearing and fundamental of damage mechanics, damage curve approach is used to relate stiffness of vibratory system and bearing running life. Furthermore, using the relation between acceleration amplitude at natural frequency and stiffness, final relation between acceleration amplitude at natural frequency and running life time according to damage curve approach can be established and the final running time is predicted. Experiments have been performed on self alignment bearing under failures on inner race and outer race to calibrate and to validate the proposed model. The comparison between model-calculated data and experimental results indicates that this model can be used effectively to predict the failure lifetime and the remaining life of a bearing system.

2020 ◽  
pp. 43-50
Author(s):  
A.S. Komshin ◽  
K.G. Potapov ◽  
V.I. Pronyakin ◽  
A.B. Syritskii

The paper presents an alternative approach to metrological support and assessment of the technical condition of rolling bearings in operation. The analysis of existing approaches, including methods of vibration diagnostics, envelope analysis, wavelet analysis, etc. Considers the possibility of applying a phase-chronometric method for support on the basis of neurodiagnostics bearing life cycle on the basis of the unified format of measurement information. The possibility of diagnosing a rolling bearing when analyzing measurement information from the shaft and separator was evaluated.


Author(s):  
Theddeus Tochukwu Akano

Normal oral food ingestion processes such as mastication would not have been possible without the teeth. The human teeth are subjected to many cyclic loadings per day. This, in turn, exerts forces on the teeth just like an engineering material undergoing the same cyclic loading. Over a period, there will be the creation of microcracks on the teeth that might not be visible ab initio. The constant formation of these microcracks weakens the teeth structure and foundation that result in its fracture. Therefore, the need to predict the fatigue life for human teeth is essential. In this paper, a continuum damage mechanics (CDM) based model is employed to evaluate the fatigue life of the human teeth. The material characteristic of the teeth is captured within the framework of the elastoplastic model. By applying the damage evolution equivalence, a mathematical formula is developed that describes the fatigue life in terms of the stress amplitude. Existing experimental data served as a guide as to the completeness of the proposed model. Results as a function of age and tubule orientation are presented. The outcomes produced by the current study have substantial agreement with the experimental results when plotted on the same axes. There is a notable difference in the number of cycles to failure as the tubule orientation increases. It is also revealed that the developed model could forecast for any tubule orientation and be adopted for both young and old teeth.


2008 ◽  
Vol 385-387 ◽  
pp. 893-896
Author(s):  
Kyung Woo Lee ◽  
Hyun Uk Kim ◽  
Sang Wook Park ◽  
Jung Suk Lee ◽  
Kwang Ho Kim ◽  
...  

This study focused on the determination of fracture toughness by instrumented indentation technique. A theoretical model to estimate the fracture toughness of ductile materials is proposed and used to verify those results. Modeling of IIT to evaluate fracture toughness is based on two main ideas; the energy input up to characteristic fracture initiation point during indentation was correlated with material’s resistance to crack initiation and growth, and this characteristic fracture initiation point was determined by concepts of continuum damage mechanics. The estimated fracture toughness values obtained from the indentation technique showed good agreement with those from conventional fracture toughness tests based on CTOD. In addition, we confirmed that the proposed model can be also applied in the brittle material through modification of void volume fraction.


2015 ◽  
Vol 8 (1) ◽  
pp. 49-65
Author(s):  
J. J. C. Pituba ◽  
W. M. Pereira Júnior

This work deals with an improvement of an anisotropic damage model in order to analyze reinforced concrete structures submitted to reversal loading. The original constitutive model is based on the fundamental hypothesis of energy equivalence between real and continuous media following the concepts of the Continuum Damage Mechanics. The concrete is assumed as an initial elastic isotropic medium presenting anisotropy, permanent strains and bimodularity induced by damage evolution. In order to take into account the bimodularity, two damage tensors governing the rigidity in tension or compression regimes are introduced. However, the original model is not capable to simulate the influence of the previous damage processes in compression regimes. In order to avoid this problem, some conditions are introduced to simulate the damage unilateral effect. It has noted that the damage model is agreement with to micromechanical theory conditions when dealing to unilateral effect in concrete material. Finally, the proposed model is applied in the analyses of reinforced concrete framed structures submitted to reversal loading. These numerical applications show the good performance of the model and its potentialities to simulate practical problems in structural engineering.


2018 ◽  
Vol 612 ◽  
pp. A74 ◽  
Author(s):  
Pavel Kroupa ◽  
Tereza Jeřábková ◽  
František Dinnbier ◽  
Giacomo Beccari ◽  
Zhiqiang Yan

A scenario for the formation of multiple co-eval populations separated in age by about 1 Myr in very young clusters (VYCs, ages less than 10 Myr) and with masses in the range 600–20 000 M⊙ is outlined. It rests upon a converging inflow of molecular gas building up a first population of pre-main sequence stars. The associated just-formed O stars ionise the inflow and suppress star formation in the embedded cluster. However, they typically eject each other out of the embedded cluster within 106 yr, that is before the molecular cloud filament can be ionised entirely. The inflow of molecular gas can then resume forming a second population. This sequence of events can be repeated maximally over the life-time of the molecular cloud (about 10 Myr), but is not likely to be possible in VYCs with mass <300 M⊙, because such populations are not likely to contain an O star. Stellar populations heavier than about 2000 M⊙ are likely to have too many O stars for all of these to eject each other from the embedded cluster before they disperse their natal cloud. VYCs with masses in the range 600–2000 M⊙ are likely to have such multi-age populations, while VYCs with masses in the range 2000–20 000 M⊙ can also be composed solely of co-eval, mono-age populations. More massive VYCs are not likely to host sub-populations with age differences of about 1 Myr. This model is applied to the Orion Nebula Cluster (ONC), in which three well-separated pre-main sequences in the colour–magnitude diagram of the cluster have recently been discovered. The mass-inflow history is constrained using this model and the number of OB stars ejected from each population are estimated for verification using Gaia data. As a further consequence of the proposed model, the three runaway O star systems, AE Aur, μ Col and ι Ori, are considered as significant observational evidence for stellar-dynamical ejections of massive stars from the oldest population in the ONC. Evidence for stellar-dynamical ejections of massive stars in the currently forming population is also discussed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Defeng Lv ◽  
Huawei Wang ◽  
Changchang Che

Purpose The purpose of this study is to achieve an accurate intelligent fault diagnosis of rolling bearing. Design/methodology/approach To extract deep features of the original vibration signal and improve the generalization ability and robustness of the fault diagnosis model, this paper proposes a fault diagnosis method of rolling bearing based on multiscale convolutional neural network (MCNN) and decision fusion. The original vibration signals are normalized and matrixed to form grayscale image samples. In addition, multiscale samples can be achieved by convoluting these samples with different convolution kernels. Subsequently, MCNN is constructed for fault diagnosis. The results of MCNN are put into a data fusion model to obtain comprehensive fault diagnosis results. Findings The bearing data sets with multiple multivariate time series are used to testify the effectiveness of the proposed method. The proposed model can achieve 99.8% accuracy of fault diagnosis. Based on MCNN and decision fusion, the accuracy can be improved by 0.7%–3.4% compared with other models. Originality/value The proposed model can extract deep general features of vibration signals by MCNN and obtained robust fault diagnosis results based on the decision fusion model. For a long time series of vibration signals with noise, the proposed model can still achieve accurate fault diagnosis.


2021 ◽  
Author(s):  
RYOMA AOKI ◽  
RYO HIGUCHI ◽  
TOMOHIRO YOKOZEKI

This study aims to conduct a fatigue simulation for predicting the stiffness degradation of thin-ply composite laminates with several ply thicknesses. For the simulation, a fatigue evolution model of intra-laminar damage in thin-ply composite laminates considering the effect of ply thickness was proposed. The intra-laminar damage evolution was modeled using the continuum damage mechanics model and the static and fatigue evolution law were formulated by relating the transverse crack density to the damage variable. The finite element simulation using the proposed model was conducted to predict the stiffness degradation of the laminates as a function of the number of loading cycles. The simulation results show that the experimental data can be reproduced by using the proposed fatigue model.


2020 ◽  
Vol 17 (162) ◽  
pp. 20190708 ◽  
Author(s):  
Di Zuo ◽  
Stéphane Avril ◽  
Haitian Yang ◽  
S. Jamaleddin Mousavi ◽  
Klaus Hackl ◽  
...  

Healing of soft biological tissues is the process of self-recovery or self-repair after injury or damage to the extracellular matrix (ECM). In this work, we assume that healing is a stress-driven process, which works at recovering a homeostatic stress metric in the tissue by replacing the damaged ECM with a new undamaged one. For that, a gradient-enhanced continuum healing model is developed for three-dimensional anisotropic tissues using the modified anisotropic Holzapfel–Gasser–Ogden constitutive model. An adaptive stress-driven approach is proposed for the deposition of new collagen fibres during healing with orientations assigned depending on the principal stress direction. The intrinsic length scales of soft tissues are considered through the gradient-enhanced term, and growth and remodelling are simulated by a constrained-mixture model with temporal homogenization. The proposed model is implemented in the finite-element package Abaqus by means of a user subroutine UEL. Three numerical examples have been achieved to illustrate the performance of the proposed model in simulating the healing process with various damage situations, converging towards stress homeostasis. The orientations of newly deposited collagen fibres and the sensitivity to intrinsic length scales are studied through these examples, showing that both have a significant impact on temporal evolutions of the stress distribution and on the size of the damage region. Applications of the approach to carry out in silico experiments of wound healing are promising and show good agreement with existing experiment results.


Author(s):  
Rebeka Raff ◽  
Velimir Golub ◽  
Jurica Perko

The aim of this paper is to find an optimal size of different components of an off-grid PV system in the HOMER software with different types of batteries (lead-acid batteries and lithium-ion batteries). The proposed model shows the optimal size of the off-grid PV system for a holiday cottage with regard to eligibility criteria for various types of batteries and the net present cost (NPC). The observed off-grid PV system consists of PV modules, a load, a converter and batteries and it is modelled in the HOMER software. The load is modelled with a daily load diagram for the holiday cottage. For lead-acid and lithium-ion batteries the optimal size of different components of an off-grid PV system for five different scenarios (in respect of the price and life-time) is obtained. In addition, the optimal size of the presented model with respect to different values of capacity shortage ranging from 0% to 5% is presented


2015 ◽  
Vol 742 ◽  
pp. 147-149
Author(s):  
Li Huo

Rolling bearing is an important part of rotating machinery. Its failure will directly affect the normal operation of the whole machinery. This study proposed an intelligent diagnosis model based on Fuzzy support vector description for the quantitative identification of bearing fault. The proposed model constructs the spherically shaped decision boundary by training the features of normal bearing data, and then calculates the fuzzy monitoring coefficient to identify the bearing damage.


Sign in / Sign up

Export Citation Format

Share Document