scholarly journals PENGGUNAAN TERAK NIKEL SEBAGAI AGREGAT DALAM CAMPURAN BETON

2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Wayan Mustika ◽  
I M. Alit K. Salain ◽  
I K. Sudarsana

Nickel slag is one kind of nickel ore smelting waste after the combustion process. Production of nickel slag PT. Antam Pomalaa Kolaka Southeast Sulawesi province during the period 2011-2012 period approximately 1 million tons of slag / year, with a nickel content in ore processing of nickel is between 1.80% to 2.00%. Visually, the physical form of this nickel slag aggregate resembles. Research on the use of nickel slag as an aggregate in concrete mixture is carried out using a cylindrical specimen with a diameter of 15 cm and 30 cm high by 48 pieces were tested at 28 days with some variations in the mix. Variation 01, 100% natural aggregate, variation 02, nickel slag as coarse aggregate, variation 03, nickel slag as fine aggregate, and variation 04, nickel slag as coarse aggregate and fine aggregate. Aggregate gradation in the mixture is set and is designed so that it meets the specifications gradation mix for maximum aggregate size of 40 mm. The composition of the concrete mixture used is a mixture of concrete with the ratio of cement : fine aggegate : coarse aggregate is 1: 2: 3 in a weight ratio with cement water ratio (fas) is set at 0.5. The results showed that when compared with the use of natural agregate, terak nickel is used only as a coarse agregate, a fine agregate only and combined agregate coarse and fine agregates resulting slump values ??fell 39.47%, an increase of 55.26%, and an increase of 34.21%. As a coarse agregate, terak nickel increases the compressive strength, modulus of elasticity and splitting tensile strenght, respectively for 42.27%, 19.37% and 23.46%. As fine agregate, nickel terak resulting value of compressive strength, modulus of elasticity and tensile strength divided down respectively by 16.75%, 6.70% and 24.58%. As a combination of coarse and fine agregate, terak nickel increases the compressive strength, modulus of elasticity and splitting tensile strenght, respectively for 10.31%, 9.26% and 6.70%.  

Copper slag is a rough blasting grit or a by-product acquired by the process of copper smelting and refining. These copper slags are recycled for copper recovery. In this paper, we analysed copper slag’s feasibility and evaluate its total competence in M25 grade concrete. In this observation, a concrete mixture is applied with copper slag as a fine aggregate ranging from 0%, 20%, 40%, 60%, 80%, and 100% respectively. The strength of copper slag’s implementation is accomplished on the basis of concrete’s flexural strength, compressive strength and splitting tensile strength. From the obtained results, in concrete 40% percentage of copper slag is used as sand replacement. On 28 days, the modulus of elasticity increased up to 32%, the compressive strength increased up to 34% and flexural strength is increased to 6.2%. From this experiment, it is proved technically that replacing sand using copper slag as a fine mixture in M25 grade concrete.


2019 ◽  
Vol 5 (5) ◽  
pp. 1105-1118
Author(s):  
Hesham A. Numan ◽  
Mohammed Hazim Yaseen ◽  
Hussein A. M. S. Al-Juboori

This paper presents the behavior of concrete properties by replacing the conventional coarse aggregate used in the concrete mixture by two types of lightweight aggregate; Expanded Perlite Aggregate (EPA) and Volcanic Pumice (VP). To fulfill this aim; three laboratory tests were applied; density, compressive strength, and abrasion resistance, that conducted to extrapolate the range of the changes in the properties of concrete with existence those types of aggregate in the mixture. Also, the volumetric proportion adopted as a strategy for replacing the coarse aggregate by EPA or VP in the concrete mixture. Then, the volumetric proportion ranged from 10% to 50% with the variation step was 10%. Therefore, ten concrete mixtures are prepared and divided into two groups; each group contains five concrete mixes to represent the volumetric replacement (10-50)% of conventional coarse aggregate by EPA or VP. On the other hand, one extra mixture designed by using conventional aggregate (coarse and fine aggregate) without any inclusion of EPA or VP to be considered as a reference mixture. The obtained laboratory results of this study proved that the density, compressive strength, and abrasion resistance readings of concrete decreased at any volumetric proportion replacement of coarse aggregate by EPA or VP. The decrease in density and compressive strength of concrete readings amounted the peak level at 50% replacing of coarse aggregate by EPA, which were 38.19% and 77.37%, respectively than the reference mixture. Additionally, the compressive strength is an important factor affecting the abrasion resistance of concrete mixture, and loss of abrasion decreased as compressive strength increased.


2021 ◽  
Vol 3 (1) ◽  
pp. 58-63
Author(s):  
Dewi Setiawati ◽  
Bambang Jatmika ◽  
Muhammad Rizal Aditya

This study aims to determine the effects of nickel slag in the concrete mixture and on its compressive strength value. In this study, cylindrical specimen having 15cm diameter and 30cm height is used. We have used nickel slag as substitute of coarse aggregate in weight ratio of 25%, 50% & 100% respectively of coarse aggregate in sample. The ratio of concrete mixture used in this study is comprised of ratio 1:2:3 of cement, sand & gravel respectively. Compressive strength was used as a parameter for testing the samples in this study.             Test was performed using compression Testing machine, from the test results, the mean value of the average compressive strength of cylindrical concrete at the age of 3 days with a 25% variant nickel slag is 134.02 kg / cm2, 50% variant nickel slag is 165.76 kg / cm2, and 70% variant nickel slag is 148.92 kg / cm2, at age 7 days for the 25% is 219.61 kg / cm2, the 50% variant is 191.27 kg / cm2, and the 70% is 181.57 kg / cm2, while at the age of 28 days the 25% is 275.09 kg / cm2, the 50% iis equal to 296.28 kg / cm2, and the 70% is 225.37kg / cm2  


2010 ◽  
Vol 3 (2) ◽  
pp. 195-204 ◽  
Author(s):  
W.G Moravia ◽  
A. G. Gumieri ◽  
W. L. Vasconcelos

Nowadays lightweight concrete is used on a large scale for structural purposes and to reduce the self-weight of structures. Specific grav- ity, compressive strength, strength/weight ratio and modulus of elasticity are important factors in the mechanical behavior of structures. This work studies these properties in lightweight aggregate concrete (LWAC) and normal-weight concrete (NWC), comparing them. Spe- cific gravity was evaluated in the fresh and hardened states. Four mixture proportions were adopted to evaluate compressive strength. For each proposed mixture proportion of the two concretes, cylindrical specimens were molded and tested at ages of 3, 7 and 28 days. The modulus of elasticity of the NWC and LWAC was analyzed by static, dynamic and empirical methods. The results show a larger strength/ weight ratio for LWAC, although this concrete presented lower compressive strength.


2008 ◽  
Vol 3 (4) ◽  
pp. 130-137 ◽  
Author(s):  
R Kumutha ◽  
K Vijai

The properties of concrete containing coarse recycled aggregates were investigated. Laboratory trials were conducted to investigate the possibility of using recycled aggregates from the demolition wastes available locally as the replacement of natural coarse aggregates in concrete. A series of tests were carried out to determine the density, compressive strength, split tensile strength, flexural strength and modulus of elasticity of concrete with and without recycled aggregates. The water cement ratio was kept constant for all the mixes. The coarse aggregate in concrete was replaced with 0%, 20%, 40%, 60%, 80% and 100% recycled coarse aggregates. The test results indicated that the replacement of natural coarse aggregates by recycled aggregates up to 40% had little effect on the compressive strength, but higher levels of replacement reduced the compressive strength. A replacement level of 100% causes a reduction of 28% in compressive strength, 36% in split tensile strength and 50% in flexural strength. For strength characteristics, the results showed a gradual decrease in compressive strength, split tensile strength, flexural strength and modulus of elasticity as the percentage of recycled aggregate used in the specimens increased. 100% replacement of natural coarse aggregate by recycled aggregate resulted in 43% savings in the cost of coarse aggregates and 9% savings in the cost of concrete.


2020 ◽  
Vol 5 (2) ◽  
pp. 59-71
Author(s):  
Sri Devi Nilawardani

Title: The Effect of Using Mediteran Soil as Cement Substitution Materials in Compressive Strength and Tensile Strength of Concrete Concrete is a composite material (mixture) of cement, fine aggregate, coarse aggregate, and water. The potential of limestone in Indonesia is very large, reaching 28.678 billion tons which is the main ingredient in the cement manufacture. In the long run it will be depleted because it is a non-renewable natural resources. So to reduce the use of limestone the utilization of Mediteran soil as a substitution for some cement in the manufacture of concrete is required. The initial idea is based on the chemical composition contained in the Mediteran soil almost identical to the cement, which is carbonate (CaO) and silica (SiO2). The purpose of this research is to reveal the influence of substitution of Mediteran soil by 20% and 40% in the compressive strength and tensile of the concrete at age 3, 7, 14, and 28 days with the number of test specimen each 3 pieces on each variation in 10cm x20cm cylinder with planning of concrete mixture refers to SK SNI method T-15-1900-03. The type of research used is quantitative with the experimental method of laboratory test and data analysis of comparative method and regression. The results show that compressive strength and tensile strength of concrete using Mediteran soil substitution comparable to  the strength of normal concrete with dry treatment. In the composition of 20% Mediteran soils decreased by 51.35% or 7.9 MPa (compressive strength) and 30.60% or 0.93 MPa (tensile strength). While the composition of 40% Mediteran soil decreased by 43.78% or 9.13 MPa (compressive strength) and 2.24% or 1.31 MPa (tensile strength).  


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Zhishu Yao ◽  
Yu Fang ◽  
Weihao Kong ◽  
Xianwen Huang ◽  
Xuesong Wang

In order to study the static and dynamic mechanical characteristics of the coal gangue concrete used in the mine support structure, the compressive strength test, the drop weight impact test, and the Split Hopkinson Pressure Bar (SHPB) test were conducted. The compressive strength, initial and final impacting energy, dynamic strength, and failure characteristic of concrete were obtained of the concrete single-doped with coal gangue coarse aggregate, single-doped with coal gangue fine aggregate, and codoped with coal gangue coarse and fine aggregates. The results show that (1) it is feasible that employing coal gangue to replace natural coarse and fine aggregates in concrete can prepare C30 and C40 concrete; (2) the addition of coal gangue fine aggregate has a positive effect on the impact energy of the initial and final cracks of concrete, while the addition of coal gangue coarse aggregate has a negative effect on it; (3) compared with the static strength, the dynamic strength of concrete is improved no matter whether coal gangue is added to concrete; (4) the incorporation of coal gangue coarse aggregate will make the concrete shear surface smooth; (5) at the given impacting pressure, the concrete with coal gangue coarse aggregate has greater particle breakage and those with coal gangue fine aggregate has less. The research of this study can be a reference for the application of gangue concrete in mine support structures.


2015 ◽  
Vol 17 (3) ◽  
Author(s):  
Hartono Hartono

Hartono, in this paper explain that to obtain the allowed characteristic compressive strength of concrete from a concrete construction is quite difficult , because it is influenced by the mix of materials used for the manufacture of the construction, in which the require material of the concrete mix had to be in accordance with Reinforced Concrete Indonesia Rule Year 1991. The main factor of mix material that affect permitted the compressive strength of concrete is aggregate characteristics, namely the coarse aggregate or crushed stone. Therefore this study is intended to determine the compressive strength of concrete with the characteristics of coarse aggregate material of crushed stone that comes from limestone. This research use Gresik PC mixture concrete, muntilan sand, and kricak of limestone. To determine concrete compressive characteristics strength of concrete, concrete specimen as many as 20 pieces, with mixed-use PC weight ratio of 1 : 2 Ps : 3, cube molded kricak with the size of 15 cm X 15 cm X 15 cm was made. From these results, it can be obtained that concrete compressive characteristic strength σ 1 bk = 215.41 kg / cm2. Keyword: Concrete construction


2018 ◽  
Vol 203 ◽  
pp. 06001
Author(s):  
Muhammad Bilal Waris ◽  
Hussain Najwani ◽  
Khalifa Al-Jabri ◽  
Abdullah Al-Saidy

To manage tyre waste and conserve natural aggregate resource, this research investigates the use of waste tyre rubber as partial replacement of fine aggregates in non-structural concrete. The research used Taguchi method to study the influence of mix proportion, water-to-cement ratio and tyre rubber replacement percentage on concrete. Nine mixes were prepared with mix proportion of 1:2:4, 1:5:4 and 1:2.5:3; water-to-cement ratio of 0.25, 0.35 and 0.40 and rubber to fine aggregate replacement of 20%, 30% and 40%. Compressive strength and water absorption tests were carried out on 100 mm cubes. Compressive strength was directly proportional to the amount of coarse aggregate in the mix. Water-to-cement ratio increased the strength within the range used in the study. Strength was found to be more sensitive to the overall rubber content than the replacement ratio. Seven out of the nine mixes satisfied the minimum strength requirement for concrete blocks set by ASTM. Water absorption and density for all mixes satisfied the limits applicable for concrete blocks. The study indicates that mix proportions with fine to coarse aggregate ratio of less than 1.0 and w/c ratio around 0.40 can be used with tyre rubber replacements of up to 30 % to satisfy requirements for non-structural concrete.


2019 ◽  
Vol 801 ◽  
pp. 391-396
Author(s):  
Janardhan Prashanth ◽  
Harish Narayana ◽  
Ramji Prasad

In this paper comparative study on the compressive strength and permeability of pervious concrete with and without fine aggregate is done. Sand and LLDPE (Linear low density polythene) with varying percentages are used as fine aggregates. Sand is added in percentages of 5%, 10% and 15% of the coarse aggregate in all the mixes. LLDPE powder is added in the percentage of 5%, 10% and 15% of the coarse aggregate in all the mixes. With the addition of fine aggregate the compressive strength of the pervious concrete increases but permeability reduces. The results show that the pervious concrete with LLDPE powder there is a considerable increase in compressive strength as compared to no-fines mix and mix with sand as fine aggregate. The study recommends the use of eco-friendly pervious concrete with LLDPE powder as an alternative to the existing pavements with low volume traffic.


Sign in / Sign up

Export Citation Format

Share Document