INFLUENCE OF OLIVE OIL ON THE RHEOLOGICAL CHARACTERISTICS OF MAYONNAISE

2021 ◽  
Vol 22 (4) ◽  
pp. 40-49
Author(s):  
A.N. Martekha ◽  
◽  
V.N. Andreev ◽  

Rheological properties are an important parameter for the quality of mayonnaise. This article in-vestigated the effect of adding olive oil on the rheological properties and color change of mayon-naise. The influence of the storage time of mayonnaise in the refrigerator on the change in rheo-logical properties was also investigated. Mayonnaise was prepared on a laboratory rotary disperser of the Turrex type with a rotor / stator system with a rotor speed range (10000-30000 rpm) at room temperature. Mayonnaise contains 75% oil with varying proportions of sunflower oil and ol-ive oil. Rheological measurements were carried out on a Brookfield rotary viscometer with con-centric cylinders at temperatures of 10 ° C and 25 ° C. Based on the data obtained, the consistency coefficient of the rheological parameters, the flow index and the apparent viscosity were calculat-ed. The color of the test samples of mayonnaise was measured using a three-color colorimeter. All mayonnaise samples exhibit non-Newtonian pseudoplastic flow with a defined thixotropic loop area. Research results have shown that the addition of olive oil affects the rheological properties and color of mayonnaise. The addition of olive oil to the oil phase of mayonnaise reduces shear stress, apparent viscosity, consistency factor and color change at 25 ° C and 10 ° C. When storing mayonnaise in the refrigerator for 15 days, the rheological parameters change. Sunflower oil may-onnaise (75%) has the highest value (L), which means it is measured instrumentally as the bright-est.

2007 ◽  
Vol 23 (5-6-2) ◽  
pp. 163-170 ◽  
Author(s):  
J. Domagała ◽  
M. Sady ◽  
T. Grega ◽  
D. Najgebauer-Lejko

Set yogurt from goat?s milk with addition of two texture improvers DSE 6693 and DSE 6694 from NZMP New Zealand, added in the amount of 1, 2and 3% and control yogurt without addition of texture improvers were produced. In yogurt determined sensory quality, pH, apparent viscosity and rheological properties. Flow curves obtained for produced yogurts were described by three rheological models: Ostwald de Waele, Herschel-Bulkley (H-B) and Casson. Addition of texture improver caused an increase in total solids and total protein content of milk for yogurt. Yogurt with texture improvers gave better sensory quality than control yogurt. The yogurt with 1% addition of DSE 6693 and with 2% addition of DSE 6694 had the best sensory quality. The increase in addition level of texture improvers caused an increase in apparent viscosity, consistency coefficient K, yield stress (except H-B model) and deviation from Newtonian flow (decrease of flow index n). Effect of type of improver was rather negligible, whereas its level addition considerably influenced the evaluated rheological parameters.


2020 ◽  
Vol 73 (4) ◽  
pp. 696-699
Author(s):  
Lena L. Davtian ◽  
Galyna P. Kukhtenko ◽  
Alona S. Voronkina ◽  
Viktoria V. Kudria

The aim of the present research was to investigate the rheological properties of the medicinal syrup for oral administration with glucosamine hydrochloride and levocarnitine. Matherials and methods: Coefficient of the dynamic flow (at shear rates of 3,49 and 10,3 s -1, as well as at shear rates of 27.2 and 149.0 s-1), mechanical stability, the index of destruction and restoration were studied. The rheological (structural-mechanical) properties of the samples were determined using a Rheolab QC rotary viscometer (AntonPaar, Austria) with coaxial cylinders CC27 / S-SN29766. The rheological parameters were studied at the temperature 20±0,5 °С. Results: It is established that the syrup has weakly expressed plastic viscous and thixotropic properties (the hysteresis area for the syrupis 1710.19 Pas/s). Such results characterize the system as a reopex. Conclusions: The results of the study enables classification of the research object as system with a low degree of fluidity. Such dependence is typical for systems of the Newtonian type of flow and characterizes the syrup under investigation as a weakly structured disperse system.


2012 ◽  
Vol 430-432 ◽  
pp. 301-305
Author(s):  
Li Wen Tan ◽  
Dong Mei Xu ◽  
Quan Ji ◽  
Bing Bing Wang ◽  
Yan Zhi Xia

Rheological properties of blend spinning solution of sodium alginate and TiO2 nanoparticles (SA/nano-TiO2) were investigated. The rheological parameters, structural viscosity index (Δη) and flow activation energy (Eη) of spinning solutions were calculated. The results reported that the blend spinning solutions were non-newtonian fluids. The apparent viscosity, consistency index (k) and Eη increased with increasing nano-TiO2 content in SA spinning solution, but the degradation degree of apparent viscosity decreased, flow behavior index (n) only slightly decreased and the Δη had no significantly change. The apparent viscosity (ηa) of spinning solutions could be regulated by changing temperature under 50oC. Blend spinning solution had good stability and practical applicability.


2013 ◽  
Vol 33 (2) ◽  
pp. 141-148 ◽  
Author(s):  
Germán Ayala Valencia ◽  
Ana Cecilia Agudelo Henao ◽  
Rubén Antonio Vargas Zapata

Abstract Glycerol/starch (G/S) solutions were prepared at different concentrations, with a weight ratio of G/S=0.0, 0.1, 0.2, 0.3, 0.4 and 0.5, and rheological properties were analyzed at 30, 40, 50, 60 and 70°C. Power law dependency of the apparent viscosity as a function of the shear rate is the most appropriate model for describing the rheological behavior of cassava starch solutions as a function of glycerol concentrations. All solutions showed a pseudoplastic behavior; the flow index (n) did not show significant changes as a function of temperature and glycerol concentration. However, the apparent viscosity (μa) and the consistency coefficient (K) did show strong variations with temperature and glycerol content. The temperature variation of both μa and K were better fitted to an exponential model type exp(Ea /RT), logμa(K) vs. 1000/T. The activation energy of the K data for the solution without glycerol (G/S=0.0) was 13.64 KJ/mol, and it decreased with increasing the content of glycerol in the solutions, becoming 6.14 KJ/mol for G/S=0.5. On the contrary, the activation energy for the μa data increased when increasing the glycerol concentration. The effect of glycerol concentration was also modeled using polynomial and exponential fittings.


2009 ◽  
Vol 419-420 ◽  
pp. 53-56
Author(s):  
Bao Yu Song ◽  
Qing Xiang Yang ◽  
Feng Zhang ◽  
Dai Zhong Su

The apparent viscosity of aircraft grease with different nano-particles content, temperature and shear rates were studied using a rotational viscometer. The rheological properties of two types of aircraft grease, the basic grease and the one with nano-particles additives, were investigated using a rheometer. The results indicated that the apparent viscosity increases with the increase of nanoparticle concentration with the given ratio of nano-particles added. It was also found that the grease with and without the nano-particles both have yield stresses and clear shear-thinning properties. The shear-thinning phenomenon of the grease containing nano-particles is more evident than that of the basic grease. The experimental results also reveal that the rheological characteristics of both types of grease fall in Herschel-Bulkley class, and the nano-particles have a significant influence on the rheological parameters. At the end, the rheology mechanism was discussed based on the entanglement and orientation theories.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
By Pinghe Sun ◽  
Binkui Zhao ◽  
Han Cao ◽  
Jingyuan Wang ◽  
Dingqiang Mo ◽  
...  

Ion stabilizers can enhance the reinforcement slurry effect on the wall and stabilize the wall actively in slurry shields. This paper presents different cation exchange capacities obtained by changing the content of the ion stabilizer (1.5%, 2.0%, 2.5%, 3.0%, 3.5%, 4.0%, 4.5%, 5.0%, 5.5%, and 6.0%) in slurry associated with the basis of the existing slurry formula through the laboratory tests. In order to study the effect of the cation exchange capacity on the performance of slurry properties, the rheological properties of the slurry are analyzed and evaluated by the power law model. Results indicate that the cation exchange capacity of the slurry decreases first and then increases with the increase of the ion stabilizer content. When the content of the ion stabilizer is maintained at 3.50%, the cation exchange capacity reaches the minimum value of 2.92. The filtration volumes, pH values, and rheological parameters of the slurry also indicate an obvious linear change with the change of the cation exchange capacity. The minimum filtration volume is 9.70 mL/30 min when the ion stabilizer content reaches 3.50%. However, the pH value reaches the maximum, that is, 11.34 which is changed from 10, and the change could be considered as a constant value in the field work. When the cation exchange capacity increases, the continuity of polymer structure in the slurry decreases first and then increases, the flow index and consistency coefficient are located within a reasonable range, and the rheological properties of the slurry meet the design requirements of the standards.


2013 ◽  
Vol 804 ◽  
pp. 216-221
Author(s):  
Xiao Xia Jian ◽  
Wei Liang Zhou ◽  
Le Qin Xiao ◽  
Xiu Li Hu ◽  
Qi Long Zheng

A method to evaluate the rheological properties of low density polyethylene (LDPE) using torque rheometer was developed and the parameter of Power rate model were obtained by fitting balance torque and balance temperature. The rheological parameters of polymer melts were evaluated on the basis of previous equation by introducing the apparent filling degree in torque rheometer, the results show the temperature compensated torque (Mtc) increase from 5.685 Nm to 6.972 Nm, while apparent filling degree change from 0.65 to 0.85 at the rotor speed of 29.98 rpm. TheMtcalso increase from 2,900 Nm to 3.528 Nm and increase by 0.628 Nm at the rotor speed of 4.985 rpm, while it increase by 1.287 Nm from 5.685 Nm to 6.972 Nm at the rotor speed of 29.99 rpm, which means the higher the rotor speed, the more influence on the torque. The other relative rheological parameters, such as the activation energy (ΔE), the Non-Newton (n), etc., calculated in this model, indicate the effect of apparent filling degree on the polymer melting rheology. The calculated values were compared with those derived from capillary rheolometer, the results show the apparent viscosity decrease with the increase shear rate in exponential function, the change rules of apparent viscosity are good agreement from two kinds test methods.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 554
Author(s):  
Juan He ◽  
Congmi Cheng ◽  
Xiaofen Zhu ◽  
Xiaosen Li

The effect of silica fume on the rheological properties of a cement–silica fume–high range water reducer–water mixture with ultra-low water binder ratio (CSHWM) was studied. The results indicate that the W/B ratio and silica fume content have different effects on the rheological parameters, including the yield stress, plastic viscosity, and hysteresis loop area. The shear-thickening influence of CSHWM decreased with the increased silica fume content. When the silica fume content increased from 0% to 35%, the mixture with W/B ratio of 0.19 and 0.23 changed from a dilatant fluid to a Newtonian fluid, and then to a pseudoplastic fluid. When the silica fume content was less than 15%, the yield stress was close to 0. With the increase of silica fume content, the yield stress increased rapidly. The plastic viscosity and hysteresis loop area decreased slightly with the addition of a small amount of silica fume, but increased significantly with the continuous increase of silica fume. Compared with the Bingham and modified Bingham models, the Herschel–Buckley model is more applicable for this CSHWM.


10.5219/1161 ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 730-734
Author(s):  
Vojtěch Kumbár ◽  
Sylvie Ondrušíková ◽  
Šárka Nedomová

The objective of this paper was to determine the rheological properties especially shear stress and apparent viscosity vs. shear strain rate, and density of commercially available but also homemade tomato ketchup. The effect of tomato content of density and apparent viscosity of tomato ketchup was also described. Shear stress and apparent viscosity were observed in shear strain rates range from 0.1 s-1 up to 68 s-1. All measurements were carried out at a constant temperature of 22 °C. Experimental results were modeled using a power-law (also known as Ostwald-de Waele) model (R2 ranged from 0.9508 up to 0.9991). The flow behaviour of all measured tomato ketchup samples exhibited non-Newtonian pseudoplastic (shear thinning) behavior where the flow index (n) showed values between 0 and 1. Flow index (n) and consistency coefficient (K) can be used especially in numerical simulation of the flow behaviour of pseudoplastic (shear thinning) liquids.


Nahrung/Food ◽  
1991 ◽  
Vol 35 (2) ◽  
pp. 161-167 ◽  
Author(s):  
M. C. Ballesta ◽  
E. Martinez-Victoria ◽  
M. Mañas ◽  
F. J. Mataix ◽  
I. Seiquer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document