scholarly journals Optimal Storage Conditions to Improve the Performance of Chip-Based TLR Biosensor

Author(s):  
Chankyu Park

A chip-based electrochemical biosensor allows a rapid and cost-effective measurement which can take less than 30 mins. In comparison, the current method of detecting bacteria is expensive and time-consuming because it must go through cell culturing and laboratory work, which can take 5 days. For this reason, we have been developing a chip-based electrochemical biosensor by modifying commercially available chips. Biosensors using antibodies and DNA are great for identifying specific strains of bacteria. However, their narrow scope is not suited for environmental monitoring. We have been using Toll-like Receptors as the biorecognition element, which has a wider scope detecting a wide range of pathogens. The constructed biosensors are tested against diacylated lipopeptide (Pam2CSK4), a Pathogen Associated Molecular Pattern. Some of the chips are tested right away against Pam2CSK4 while the rest of them are stored in different storage conditions varying in temperatures, buffers and additives. The performance of the chips before and after each storage condition is compared. Finding an optimal condition to maintain and enhance the performance of the chip is critical when it comes to real-life application. However, it is challenging to maintain stability of the protein bound to the chip surface because multiple factors need to be considered such as the adhesive force strength of each layer. We are putting in more effort in developing the understanding towards this direction.

2016 ◽  
Vol 2 (1) ◽  
pp. 22-25
Author(s):  
Nur Amalina binti Mustafa ◽  
Muhammad Ashraf bin Redzuan ◽  
Muhamad Hazim bin Zuraimi ◽  
Muhamad Shuhaimi bin Shuib ◽  
Shahnaz Majeed ◽  
...  

Objective: Owing to the habit of consuming ready food among the citizens of Malaysia a study was conducted to evaluate 20 samples of canned soya milk for the presence of possible microbial content. The samples were collected randomly from shopping malls, restaurants and kiosk in Ipoh Malaysia. Methods: All samples collected across Ipoh, were subjected to test for presence bacteria in nutrient agar, blood agar and macConkey media. The possible microbial load was swapped from surface and soya milk content with a sterile cotton and streaked on nutrient agar, blood agar and macConkey culture media. The streaked petri plates were incubated for 48 hours at 37oC. Results: The study revealed negative microbial growth in all except two samples from the surface and soya milk content collected from a restaurant in nutrient agar and blood agar medium. The presence of microbes was conformed as gram positive staphylococcus sp. through gram staining. The positive growth may be imputed to poor storage condition at the restaurant. Conclusion: It can be computed from the study that the majority of the samples were free from bacterial growth, suggesting strong in house quality control mechanism at the processing unit and exquisite storage conditions in malls and kiosk suggesting that soya milk available in malls and kiosk are fit for human consumption.


2020 ◽  
pp. 1192-1198
Author(s):  
M.S. Mohammad ◽  
Tibebe Tesfaye ◽  
Kim Ki-Seong

Ultrasonic thickness gauges are easy to operate and reliable, and can be used to measure a wide range of thicknesses and inspect all engineering materials. Supplementing the simple ultrasonic thickness gauges that present results in either a digital readout or as an A-scan with systems that enable correlating the measured values to their positions on the inspected surface to produce a two-dimensional (2D) thickness representation can extend their benefits and provide a cost-effective alternative to expensive advanced C-scan machines. In previous work, the authors introduced a system for the positioning and mapping of the values measured by the ultrasonic thickness gauges and flaw detectors (Tesfaye et al. 2019). The system is an alternative to the systems that use mechanical scanners, encoders, and sophisticated UT machines. It used a camera to record the probe’s movement and a projected laser grid obtained by a laser pattern generator to locate the probe on the inspected surface. In this paper, a novel system is proposed to be applied to flat surfaces, in addition to overcoming the other limitations posed due to the use of the laser projection. The proposed system uses two video cameras, one to monitor the probe’s movement on the inspected surface and the other to capture the corresponding digital readout of the thickness gauge. The acquired images of the probe’s position and thickness gauge readout are processed to plot the measured data in a 2D color-coded map. The system is meant to be simpler and more effective than the previous development.


Biomics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 389-393
Author(s):  
D.V. Mitrofanov ◽  
N.V. Budnikova

The drone brood contains a large number of substances with antioxidant activity. These substances require stabilization and strict adherence to storage conditions. Among these substances are unique decenoic acids, the content of which is an indicator of the quality of drone brood and products based on it. The ability of drone brood to reduce the manifestations of oxidative stress is shown. There are dietary supplements for food and drugs based on drone brood, which are used for a wide range of diseases. Together with drone brood, chitosan-containing products, propolis, royal jelly can be used. They enrich the composition with their own biologically active substances and affect the preservation of the biologically active substances of the drone brood. Promising are the products containing, in addition to the drone brood, a chitin-chitosan-melanin complex from bees, propolis, royal jelly. The chitin-chitosan-melanin complex in the amount of 5% in the composition of the adsorbent practically does not affect the preservation of decenic acids, while in the amount of 2% and 10% it somewhat worsens. The acid-soluble and water-soluble chitosan of marine crustaceans significantly worsens the preservation of decenoic acids in the product. Drone brood with royal jelly demonstrates a rather high content of decenoic acids. When propolis is introduced into the composition of the product, the content of decenoic acids increases according to the content of propolis.


2020 ◽  
Vol 7 (1) ◽  
pp. 9 ◽  
Author(s):  
Shelina Bhamani ◽  
Areeba Zainab Makhdoom ◽  
Vardah Bharuchi ◽  
Nasreen Ali ◽  
Sidra Kaleem ◽  
...  

<p align="center"><em>The widespread prevalence of COVID-19 pandemic has affected academia and parents alike. Due to the sudden closure of schools, students are missing social interaction which is vital for better learning and grooming while most schools have started online classes. This has become a tough routine for the parents working online at home since they have to ensure their children’s education. The study presented was designed to explore the experiences of home learning in times of COVID-19. A descriptive qualitative study was planned to explore the experiences of parents about home learning and management during COVID-19 to get an insight into real-life experiences.  Purposive sampling technique was used for data collection.  Data were collected from 19 parents falling in the inclusion criteria. Considering the lockdown problem, the data were collected via Google docs form with open-ended questions related to COVID-19 and home learning. Three major themes emerged after the data analysis: impact of COVID on children learning; support given by schools; and strategies used by caregivers at home to support learning. It was analyzed that the entire nation and academicians around the world have come forward to support learning at home offering a wide range of free online avenues to support parents to facilitate home-learning. Furthermore, parents too have adapted quickly to address the learning gap that have emerged in their children’s learning in these challenging times. Measures should be adopted to provide essential learning skills to children at home. Centralized data dashboards and educational technology may be used to keep the students, parents and schools updated.</em></p>


Author(s):  
Allan Matthews ◽  
Adrian Leyland

Over the past twenty years or so, there have been major steps forward both in the understanding of tribological mechanisms and in the development of new coating and treatment techniques to better “engineer” surfaces to achieve reductions in wear and friction. Particularly in the coatings tribology field, improved techniques and theories which enable us to study and understand the mechanisms occurring at the “nano”, “micro” and “macro” scale have allowed considerable progress to be made in (for example) understanding contact mechanisms and the influence of “third bodies” [1–5]. Over the same period, we have seen the emergence of the discipline which we now call “Surface Engineering”, by which, ideally, a bulk material (the ‘substrate’) and a coating are combined in a way that provides a cost-effective performance enhancement of which neither would be capable without the presence of the other. It is probably fair to say that the emergence and recognition of Surface Engineering as a field in its own right has been driven largely by the availability of “plasma”-based coating and treatment processes, which can provide surface properties which were previously unachievable. In particular, plasma-assisted (PA) physical vapour deposition (PVD) techniques, allowing wear-resistant ceramic thin films such as titanium nitride (TiN) to be deposited on a wide range of industrial tooling, gave a step-change in industrial productivity and manufactured product quality, and caught the attention of engineers due to the remarkable cost savings and performance improvements obtained. Subsequently, so-called 2nd- and 3rd-generation ceramic coatings (with multilayered or nanocomposite structures) have recently been developed [6–9], to further extend tool performance — the objective typically being to increase coating hardness further, or extend hardness capabilities to higher temperatures.


Biostatistics ◽  
2019 ◽  
Author(s):  
Dane R Van Domelen ◽  
Emily M Mitchell ◽  
Neil J Perkins ◽  
Enrique F Schisterman ◽  
Amita K Manatunga ◽  
...  

SUMMARYMeasuring a biomarker in pooled samples from multiple cases or controls can lead to cost-effective estimation of a covariate-adjusted odds ratio, particularly for expensive assays. But pooled measurements may be affected by assay-related measurement error (ME) and/or pooling-related processing error (PE), which can induce bias if ignored. Building on recently developed methods for a normal biomarker subject to additive errors, we present two related estimators for a right-skewed biomarker subject to multiplicative errors: one based on logistic regression and the other based on a Gamma discriminant function model. Applied to a reproductive health dataset with a right-skewed cytokine measured in pools of size 1 and 2, both methods suggest no association with spontaneous abortion. The fitted models indicate little ME but fairly severe PE, the latter of which is much too large to ignore. Simulations mimicking these data with a non-unity odds ratio confirm validity of the estimators and illustrate how PE can detract from pooling-related gains in statistical efficiency. These methods address a key issue associated with the homogeneous pools study design and should facilitate valid odds ratio estimation at a lower cost in a wide range of scenarios.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Spyridoula Vazou ◽  
Collin A. Webster ◽  
Gregory Stewart ◽  
Priscila Candal ◽  
Cate A. Egan ◽  
...  

Abstract Background/Objective Movement integration (MI) involves infusing physical activity into normal classroom time. A wide range of MI interventions have succeeded in increasing children’s participation in physical activity. However, no previous research has attempted to unpack the various MI intervention approaches. Therefore, this study aimed to systematically review, qualitatively analyze, and develop a typology of MI interventions conducted in primary/elementary school settings. Subjects/Methods Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed to identify published MI interventions. Irrelevant records were removed first by title, then by abstract, and finally by full texts of articles, resulting in 72 studies being retained for qualitative analysis. A deductive approach, using previous MI research as an a priori analytic framework, alongside inductive techniques were used to analyze the data. Results Four types of MI interventions were identified and labeled based on their design: student-driven, teacher-driven, researcher-teacher collaboration, and researcher-driven. Each type was further refined based on the MI strategies (movement breaks, active lessons, other: opening activity, transitions, reward, awareness), the level of intrapersonal and institutional support (training, resources), and the delivery (dose, intensity, type, fidelity). Nearly half of the interventions were researcher-driven, which may undermine the sustainability of MI as a routine practice by teachers in schools. An imbalance is evident on the MI strategies, with transitions, opening and awareness activities, and rewards being limitedly studied. Delivery should be further examined with a strong focus on reporting fidelity. Conclusions There are distinct approaches that are most often employed to promote the use of MI and these approaches may often lack a minimum standard for reporting MI intervention details. This typology may be useful to effectively translate the evidence into practice in real-life settings to better understand and study MI interventions.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 449
Author(s):  
Siriporn Okonogi ◽  
Adchareeya Kaewpinta ◽  
Pisaisit Chaijareenont

Carbamide peroxide (CP), a tooth whitening agent, is chemically unstable. The present study explores stability enhancement of CP by loading in a nanofibrous film (CP-F) composed of polyvinyl alcohol/polyvinylpyrrolidone/silica mixture, using an electrospinning technique. Kept at a temperature range of 60–80 °C for 6 h, CP in CP-F showed significantly higher stability than that in a polymer solution and in water, respectively. Degradation of CP in CP-F could be described by the first order kinetics with the predicted half-life by the Arrhenius equation of approximately 6.52 years. Physicochemical properties of CP-F after long-term storage for 12 months at different temperatures and relative humidity (RH) were investigated using scanning electron microscopy, X-ray diffractometry, differential scanning calorimetry, and Fourier transform infrared spectroscopy. It was found that high temperature and high humidity (45 °C/75% RH) could enhance water absorption and destruction of the nanofibrous structure of CP-F. Interestingly, kept at 25 °C/30% RH, the nanofibrous structure of CP-F was not damaged, and exhibited no water absorption. Moreover, the remaining CP, the mechanical properties, and the adhesive properties of CP-F were not significantly changed in this storage condition. It is concluded that the developed CP-F and a suitable storage condition can significantly improve CP stability.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1849
Author(s):  
Alexandre F. Santos ◽  
Pedro D. Gaspar ◽  
Heraldo J. L. de Souza

This article considers the ideal storage conditions for multiple vaccine brands, such as Pfizer, Moderna, CoronaVac, Oxford–AstraZeneca, Janssen COVID-19 and Sputnik V. Refrigerant fluid options for each storage condition, thermal load to cool each type of vaccine and environmental impacts of refrigerants are compared. An energy simulation using the EUED (energy usage effectiveness design) index was developed. The Oxford–AstraZeneca, Janssen COVID-19 and CoronaVac vaccines show 9.34-times higher energy efficiency than Pfizer. In addition, a TEWI (total equivalent warming impact) simulation was developed that prioritizes direct environmental impacts and indirect in refrigeration. From this analysis, it is concluded that the cold storage of Oxford–AstraZeneca, Janssen COVID-19 and CoronaVac vaccines in Brazil generates 35-times less environmental impact than the Pfizer vaccine.


Sign in / Sign up

Export Citation Format

Share Document