scholarly journals Spectral and statistical analysis of wind spectrum for Ali Al-Gharbi area in Iraq

2019 ◽  
pp. 1649-1657
Author(s):  
Taghreed Ali Abbas ◽  
Monim Hakim Khalaf ◽  
Amani I. Altmimi

The spectrum known represented as a relationship that’s plotted between the magnitudes or energy for a specific parameter vs. its frequency, the wind spectrum is presented as the sum of wind speed created by events divided either in space, in time, or both. This paper presents a wind speed spectrum demonstration inAli Al-Gharbi location in Iraq. The aim of the present paper is to analysis the wind speed and direction by employing the FFT (Fast Fourier Transform) therefore field measurement of wind speed and direction were collected for one year from Dec 2014 to Dec 2015 in the time interval of 10 minutes at heights of 10, 30 and 50meters. From the performance of the FFT it was found that the values of the peak which contains the highest spectral density was (226236.282 m/sec) at the frequency of (2 Hz) on the 50 m height level throughout the night time but the lowest was (115863.7 m/sec) at the frequency of (2 Hz) at the 10 m height throughout the night time. The dominant wind direction at the area was from west-Northwest and the north-Northwest. The wind speed during morning hours was higher than that at the night time.

2021 ◽  
Author(s):  
Elin Andrée ◽  
Jian Su ◽  
Martin Drews ◽  
Morten Andreas Dahl Larsen ◽  
Asger Bendix Hansen ◽  
...  

<p>The potential impacts of extreme sea level events are becoming more apparent to the public and policy makers alike. As the magnitude of these events are expected to increase due to climate change, and increased coastal urbanization results in ever increasing stakes in the coastal zones, the need for risk assessments is growing too.</p><p>The physical conditions that generate extreme sea levels are highly dependent on site specific conditions, such as bathymetry, tidal regime, wind fetch and the shape of the coastline. For a low-lying country like Denmark, which consists of a peninsula and islands that partition off the semi-enclosed Baltic Sea from the North Sea, a better understanding of how the local sea level responds to wind forcing is urgently called for.</p><p>We here present a map for Denmark that shows the most efficient wind directions for generating extreme sea levels, for a total of 70 locations distributed all over the country’s coastlines. The maps are produced by conducting simulations with a high resolution, 3D-ocean model, which is used for operational storm surge modelling at the Danish Meteorological Institute. We force the model with idealized wind fields that maintain a fixed wind speed and wind direction over the entire model domain. Simulations are conducted for one wind speed and one wind direction at a time, generating ensembles of a set of wind directions for a fixed wind speed, as well as a set of wind speeds for a fixed wind direction, respectively.</p><p>For each wind direction, we find that the maximum water level at a given location increases linearly with the wind speed, and the slope values show clear spatial patterns, for example distinguishing the Danish southern North Sea coast from the central or northern North Sea Coast. The slope values are highest along the southwestern North Sea coast, where the passage of North Atlantic low pressure systems over the shallow North Sea, as well as the large tidal range, result in a much larger range of variability than in the more sheltered Inner Danish Waters. However, in our simulations the large fetch of the Baltic Sea, in combination with the funneling effect of the Danish Straits, result in almost as high water levels as along the North Sea coast.</p><p>Although the wind forcing is completely synthetic with no spatial and temporal structure of a real storm, this idealized approach allows us to systematically investigate the sea level response at the boundaries of what is physically plausible. We evaluate the results from these simulations by comparison to peak water levels from a 58 year long, high resolution ocean hindcast, with promising agreement.</p>


2019 ◽  
Vol 7 (1) ◽  
pp. 31-48
Author(s):  
Mohammed Salem Alsubai'e ◽  
Saad Abdullah Alshatti

Renewable energy is considered one of the most important and clean sources; since it does not produce any type of emission or pollution. In Kuwait, the energy of wind is existing in three main locations, which are; Ras Jal Aliyah, Bubian in addition to Subiyah, where the characteristics of wind have been evaluated in this paper based on the data generated from the meteorological measurements at 10m height. Also, different studies have been performed in this paper in order to analyze the impact of height on the parameters of wind energy, wind density, in addition to wind speed. Jal Aliyah location has been studied in this paper and the results showed that there is a proportional relation between the wind speed and power, where the maximum power is potential if the speed is equal to 29.1 m/s, and the maximum averaged flux of wind power is equal to 725.54 W/m2. Where both Bubidan Island and Ras Subiyah showed the wind direction in the North-East quadrant with speed is greater than 10 m/s. But, the higher polarized distribution of Jal Aliyah was in the north direction. Based on the obtained results, it can be concluded that this paper provides and suggests a proper design of the wind turbines for designers.


Risks ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 19
Author(s):  
Albert Pitarque ◽  
Montserrat Guillen

Quantile regression provides a way to estimate a driver’s risk of a traffic accident by means of predicting the percentile of observed distance driven above the legal speed limits over a one year time interval, conditional on some given characteristics such as total distance driven, age, gender, percent of urban zone driving and night time driving. This study proposes an approximation of quantile regression coefficients by interpolating only a few quantile levels, which can be chosen carefully from the unconditional empirical distribution function of the response. Choosing the levels before interpolation improves accuracy. This approximation method is convenient for real-time implementation of risky driving identification and provides a fast approximate calculation of a risk score. We illustrate our results with data on 9614 drivers observed over one year.


2021 ◽  
Author(s):  
Rani P. Pawar ◽  
Thiyagesan dharmaraj ◽  
Dada P. Nade ◽  
Mahendra N. Patil ◽  
Omkar M. Patil ◽  
...  

Abstract One of the most important parameters in meteorology is the mean wind profile in the tropical cyclone boundary layer. The signature of the Nisarg cyclone is reported in the Phased Array Doppler Sound Detection and Ranging (SODAR) data installed at the Center for Space and Atmospheric Science (CSAS), Sanjay Ghodawat University, Kolhapur (16.74° N, 74.37° E; near India's western coast). The vertical profile of wind speed and wind direction measured from the sodar system clearly reveals the signature of Nisarg cyclone during 2- 3 June 2020. Our analysis revealed that, the maximum mean wind speed was 17 m/s on 3rd June 2020 at 10:00 IST. It also shows the change in the wind direction from southwest to southeast on 2nd June 2020 and 3rd June 2020. Daily high-resolution reanalysis in the domain, 0-25°N, 65-110°E, during the period from 31st May-5th June 2020 shown the variation in atmospheric pressure of the Nisarg cyclone from 1000 to 1008 hPa, sea surface tremperature (SST) between 30 and 31°C, outgoing longwave radiation (OLR) varied between 100 and 240 Wm−2, wind speed between 3 and 15 m/s and low values of vertical wind shear (VWS) was observed to the north of the track Nisarg. These findings could aid in better understanding and forecasting in this region. The present results are initial measurements of sodar system.


2016 ◽  
Vol 38 ◽  
pp. 291
Author(s):  
Diogo Machado Custodio ◽  
Jorge Yamasaki ◽  
Hildo Romeo Quinsan Junior ◽  
Gilberto Fernando Fisch

Monitoring the atmospheric conditions is one of the main activities in Aerospace Meteorology. During the launch spacecraft operations, measuring the wind at various atmospheric layers is crucial to mission success. In the Alcantara Launch Center operates a Wind Profiler (WP) Vaisala LAP-12000 which provides vertical profiles of wind between 1500 and 6000m of altitude, in layers of 145m, at intervals of 10 minutes. This study conducts a statistical analysis over one year of data obtained with WP by comparison with Vaisala RS92SGP radiosondes (RS). Correlation (ρ) analyses were performed on wind speed and its zonal and meridional components; and mean and standard deviation (σ) of the differences between the zonal and meridional components. The results has shown a strong correlation between the data acquired with both instruments, with ρ > 0,75 and σ 6 3m/s in all performed analyses.


2020 ◽  
Vol 17 ◽  
pp. 87-104
Author(s):  
Taru Olsson ◽  
Anna Luomaranta ◽  
Kirsti Jylhä ◽  
Julia Jeworrek ◽  
Tuuli Perttula ◽  
...  

Abstract. The formation of convective sea-effect snowfall (i.e., snow bands) is triggered by cold air outbreaks over a relatively warm and open sea. Snow bands can produce intense snowfall which can last for several days over the sea and potentially move towards the coast depending on wind direction. We defined the meteorological conditions which statistically favor the formation of snow bands over the north-eastern Baltic Sea of the Finnish coastline and investigated the spatio-temporal characteristics of these snow bands. A set of criteria, which have been previously shown to be able to detect the days favoring sea-effect snowfall for Swedish coastal area, were refined for Finland based on four case study simulations, utilizing a convection-permitting numerical weather prediction (NWP) model (HARMONIE-AROME). The main modification of the detection criteria concerned the threshold for 10 m wind speed: the generally assumed threshold value of 10 m s−1 was decreased to 7 m s−1. The refined criteria were then applied to regional climate model (RCA4) data, for an 11-year time period (2000–2010). When only considering cases in Finland with onshore wind direction, we found on average 3 d yr−1 with favorable conditions for coastal sea-effect snowfall. The heaviest convective snowfall events were detected most frequently over the southern coastline. Statistics of the favorable days indicated that the lower 10 m wind speed threshold improved the representation of the frequency of snow bands. For most of the favorable snow band days, the location and order of magnitude of precipitation were closely captured, when compared to gridded observational data for land areas and weather radar reflectivity images. Lightning were observed during one third of the favorable days over the Baltic Sea area.


2019 ◽  
Vol 9 (3) ◽  
pp. 367 ◽  
Author(s):  
Chequan Wang ◽  
Zhengnong Li ◽  
Qizhi Luo ◽  
Lan Hu ◽  
Zhefei Zhao ◽  
...  

This paper presents the study of the pulsating characteristics of three adjacent high-rise buildings A, B, and C under typhoon ‘Moranti’ (2016) based on the measurement of the actual top wind speed. The studied pulsating characteristics included mean wind speed and direction, turbulence intensity, gust factor, turbulence integral scale, wind speed spectrum and correlation. The relationships between each pulsating parameter and the relationship between the pulsating parameter and gust duration have been investigated. Results show that the mean wind speed and wind direction of three buildings are close. When U ≥ 10 m/s in three different sites at the same time, the turbulence intensity variation of three buildings is consistent and decreases when mean wind speed increases. Once only two locations are acquired simultaneously and the wind angle between 35° and 45°, the mean values of the along-wind and cross-wind turbulence of building A and building C are close. The along-wind turbulence of the three buildings is greater than the predicted Chinese codes for various terrains. The turbulence intensity and gust factors obtained through the analysis of the samples with the mean wind speed U ≥ 10 m/s are reasonable. The turbulence integral scales of buildings A and C are equal to the predicted values of ASCE-7 and AIJ-2004, whereas the turbulent integral scale of building B is evidently small. The gust factors of three buildings increase when the turbulence intensity increases; these two characteristics have a linear relationship. At the same time interval, building B has the maximum along-wind turbulence intensity and gust factors during the low wind speed period and building C achieves the minimum values. Building A acquires the maximum and building C obtains the minimum values in the high wind speed period. The turbulence intensity and gust factors of building B show a certain pulsation. Results show that turbulence intensity and gust factors are mainly affected by the short-term fluctuation of wind. The longitudinal wind speed spectrum of three buildings conforms well to the von Karman model. The correlation of along-wind speed depends on the wind speed, whereas the correlation of cross-wind direction is independent of wind speeds. The measured data and statistical parameters provide useful information for the wind resistance design of high-rise buildings in typhoon-prone areas.


2020 ◽  
Vol 13 (1) ◽  
pp. 233-243 ◽  
Author(s):  
Olga B. Popovicheva ◽  
Elena Volpert ◽  
Nikolay M. Sitnikov ◽  
Marina A. Chichaeva ◽  
Sara Padoan

Air quality in megacities is recognized as the most important environmental problem. Aerosol pollution by combustion emissions is remaining to be uncertain. Measurements of particulate black carbon (BC) were conducted at the urban background site of Meteorological Observatory (MO) MSU during the spring period of 2017 and 2018. BC mass concentrations ranged from 0.1 to 10 μg m–3, on average 1.5±1.3 and 1.1±0.9 µg/m3 , in 2017 and 2018, respectively. Mean BC concentrations displayed significant diurnal variations with poorly prominent morning peak and minimum at day time. BC mass concentrations are higher at night time due the shallow boundary layer and intensive diesel traffic which results in trapping of pollutants. Wind speed and direction are found to be important meteorological factors affected BC concentrations. BC pollution rose identifies the North as the direction of the preferable pollution. A negative correlation between BC concentrations and wind speed confirms the pollution accumulation preferably in stable weather days. Relation of BC pollution to a number of agriculture fires is distinguishable by air mass transportation from South and South-Est of Russia and Western Europe. Mean season ВС concentrations at rural and remote sites in different world locations are discussed.


Author(s):  
M. M. Koman

The purpose of this article is to identify the wind direction and speed using the images from geostationary satellites and through application of two-dimensional wind vectors, the magnitude and direction of which corresponds to the speed and direction of cloud masses, on a satellite image. The results may be used for making a short-term forecast of dangerous weather events within the territory of Ukraine. To make the technique work, it is necessary to select cloud areas on a satellite image using the threshold method. Then, based on the brightness temperature distribution between two tracking modules (parts of an image based on which two consecutive satellite images are compared), the maximum correlation coefficient for infrared brightness temperature is to be determined. The coefficient corresponds to the movement of cloud masses and sets the beginning and end of the wind direction vector. To determine the optimum application of the  technique for the territory of Ukraine, the analysis of accuracy of tracking modules of different sizes was also performed. The analysis revealed that the accuracy of determining the wind vector direction depends on the tracking module size: the larger it is, the more accurate is the direction vector found, but given that the time interval between images is 15 minutes, the optimum algorithm to be used in Ukraine is the one with 5x5 pixel tracking module. The technique performance was also compared with the data of ICON and GFS forecast models. The results of the applied algorithm showed that the direction of air masses was more reliable than the data retrieved from the above-mentioned forecast models, because the algorithm analyzes the real-time movement of air masses while the forecast models assess the formation and movement of air masses in advance (with an interval of several hours up to dozens of hours). Numerical wind speed forecast of ICON and GFS models is more accurate, because the algorithm determines the wind speed based on the movement of cloud masses on satellite images whereas the forecast models consider several factors (pressure fields, development and subsequent evolution of cyclones, anticyclones, geographical characteristics etc.) which makes them more realistic.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 862G-862
Author(s):  
S. Vladimirova ◽  
D.B. McConnell ◽  
R.A. Bucklin

The effect of four shade levels (47%, 63%, 80%, and 91%) on air temperature was evaluated using 24 arch-shaped, open-ended shadestructures oriented with their longitudinal axis in north–south direction. The mini-shadehouses were 80 × 185 × 80 cm (width × length × height). Six replicates per treatment (shade level) were randomly assigned within the experimental plot. Light levels were measured using Sunceram solar cells. Copper-Constantan thermocouples were installed 60 cm from ground level and 20 cm from the north entrance. The experiment was initiated in July 1994 and terminated in Oct. 1994. Data from 20 consecutive days in August were analyzed. Eighty percent shade had the highest air temperature; however, the average difference between 47%, 63%, and 91% shade was less than 1C. Wind direction and speed affected air temperature with north or south winds correlated with highest temperatures. Analysis of the data shows averaged air temperatures differed by ≤1C for all shade levels. Consequently, these structures may be used for replicated research studies involving plant growth.


Sign in / Sign up

Export Citation Format

Share Document