scholarly journals Scavenging of Free Radicals Generated in Biological Tissues Exposed to Ionizing Radiation Using Silver Nanoparticles

2020 ◽  
pp. 2257-2265
Author(s):  
Asia H. Al-Mashhadani ◽  
Omar Salah Ashour

Humans are exposed to nuclear radiations every day, and these radiations are both natural and artificial. When the body tissues are exposed to nuclear radiation, free radicals are formed, which are responsible for cancer development. In this research, silver nanoparticles were synthesized by electrical explosion wire method. Nanoparticles were added to deionized water that contained free radicals before and after exposure to gamma rays. The obtained results indicate that the silver nanoparticles have antioxidant potential through possessing free radical scavenging activity, as they can donate electron to free radicals and become neutralize. Then, these nanoparticles were injected to mice before and after their irradiation with gamma ray. The liver and kidney of the mice were shown to be unaffected by gamma irradiation.

Author(s):  
Syed Akif Raza Kazmi ◽  
Muhammad Zahid Qureshi ◽  
Sadia . ◽  
Saleh S Alhewairini ◽  
Shaukat Ali ◽  
...  

Diabetes is a life-threatening disease and chronic diabetes affects the parts of the body including the liver, kidney and pancreas. The root cause of diabetes is mainly associated with oxidative stress produced by reactive oxygen species. The minocycline is a polyphenolic drug with excellent antioxidant activities. The objective of the present study was to investigate the antidiabetic potential of minocycline modified silver nanoparticles (Mino/AgNPs) against alloxan-induced diabetic mice. The Mino/AgNPs were synthesized using minocycline as reducing and stabilizing agents. UV-vis, FTIR, X-ray diffraction (XRD) and transmission electron microscopy (TEM) were applied for the characterization of Mino/AgNPs. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay was conducted to determine the antioxidant potential of newly synthesized Mino/AgNPs. The results revealed that the Mino/AgNPs showed higher radical scavenging activity (IC50 = 19.7 µg/mL) as compared to the minocycline (IC50 = 26.0 µg/mL) and ascorbic acid (IC50 = 25.2 µg/mL). Further, the Mino/AgNPs were successfully employed to examine their antidiabetic potential against Alloxan-induced diabetic mice. Hematological results showed that the mice treated with Mino/AgNPs demonstrated a significant decrease in fasting blood glucose level and lipid profile as compared to the diabetic group. The histopathological examination confirmed that the diabetic mice treated with Mino/AgNPs showed significant recovery and revival of histo-morphology of kidney, central vein of liver and islet cells of the pancreas compared to the diabetic mice. Hence Mino/AgNPs have good antidiabetic potential and could be an appropriate nanomedicine to prevent the development of diabetes.


2022 ◽  
Vol 8 (1) ◽  
pp. 192-199
Author(s):  
Mahesh Kumar D

Background: Silver Nanoparticles are drawing significant attention from the scientific community to explore a wide range of its medical applications. Human body is under constant stress due to free radicals generated by the physiological and pathological conditions in the body. Scavenging systems or Antioxidants can help alleviate the damages caused by these radicals which can influence the course of progress in several chronic diseases with an inflammatory background. External antioxidants supplement and facilitate the overwhelmed scavenging systems in the body.Silver Nanoparticles can enhance the therapeutic effects of phytochemicals. Aim: To Synthesize silver nanoparticles using the phytochemical Hesperidin and studying its Free radical scavenging activity. Methods: Silver Nanoparticles are synthesized using chemical reduction method. The synthesis is confirmed using spectrophotometric studies. Free Radical scavenging activity is detected using 1, 1-diphenyl-2-picrylhydrazyl (DPPH •) free radical scavenging assay. Results: Silver nanoparticles were successfully synthesized which was confirmed by the change in color of the solution and peak absorbance peak at 420 nM on spectrophotometric studies.Hesperidin Silver Nanoparticles exhibited higher free radical scavenging activity when compared with pure hesperidin and standard Ascorbic acid. Conclusion: Hesperidin can ideally be used for the synthesis of silver nanoparticles and the synthesized Silver Nanoparticles enhances the free radical scavenging activity of Hesperidin which can further be evaluated by In Vivo studies.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2588
Author(s):  
Nattakarn Wongsrangsap ◽  
Suttida Chukiatsiri

The emergence of excessive free radicals leads to the destruction of various systems within the body. These free radicals also affect nutritional values, color, taste, and emit an odor akin to rancid food. Most food industries use synthetic antioxidants, such as BHT (butylated hydroxytoluene) or BHA (butylated hydroxy anisole). However, high doses of these can be harmful to our health. Therefore, an antioxidant compounds, such as bioactive peptides from edible animals or plants, have emerged to be a very promising alternative as they reduce potential side effects. This study focused on the purification and identification of antioxidant peptides from protein hydrolysates of wild silkworm pupae (Samia ricini). Antioxidant peptides were purified from the hydrolysate by ultrafiltration and RP-HPLC. The results showed that protein hydrolysate from S. ricini pupae by trypsin with a molecular weight lower than 3 kDa and highly hydrophobic property, exhibited strong DPPH radical scavenging activity and chelating activity. Further identification of peptides from the fraction with the highest antioxidant activity was carried out using LC-MS/MS. Three novel peptides, i.e., Met-Ley-Ile-Ile-Ile-Met-Arg, Leu-Asn-Lys-Asp-Leu-Met-Arg, and Glu-Asn-Ile-Ile-Leu-Phe-Arg, were identified. The results of this study indicated that the protein hydrolysate from S. ricini pupae possessed potent biological activity, and the novel antioxidant peptides could be utilized to develop health-related antioxidants in food industry.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1678
Author(s):  
Syed Akif Raza Kazmi ◽  
Muhammad Zahid Qureshi ◽  
Sadia ◽  
Saleh S. Alhewairini ◽  
Shaukat Ali ◽  
...  

Diabetes is a life-threatening disease, and chronic diabetes affects parts of the body including the liver, kidney, and pancreas. The root cause of diabetes is mainly associated with oxidative stress produced by reactive oxygen species. Minocycline is a drug with a multi-substituted phenol ring and has shown excellent antioxidant activities. The objective of the present study was to investigate the antidiabetic potential of minocycline-modified silver nanoparticles (mino/AgNPs) against alloxan-induced diabetic mice. The mino/AgNPs were synthesized using minocycline as reducing and stabilizing agents. UV-visible, FT-IR, X-ray diffraction (XRD), and transmission electron microscopy (TEM) were applied for the characterization of mino/AgNPs. A 2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay was conducted to determine the antioxidant potential of newly synthesized mino/AgNPs. The results revealed that the mino/AgNPs showed higher radical scavenging activity (IC50 = 19.7 µg/mL) compared to the minocycline (IC50 = 26.0 µg/mL) and ascorbic acid (IC50 = 25.2 µg/mL). Further, mino/AgNPs were successfully employed to examine their antidiabetic potential against alloxan-induced diabetic mice. Hematological results showed that the mice treated with mino/AgNPs demonstrated a significant decrease in fasting blood glucose level and lipid profile compared to the untreated diabetic group. A histopathological examination confirmed that the diabetic mice treated with mino/AgNPs showed significant recovery and revival of the histo-morphology of the kidney, central vein of the liver, and islet cells of the pancreas compared to the untreated diabetic mice. Hence, mino/AgNPs have good antidiabetic potential and could be an appropriate nanomedicine to prevent the development of diabetes.


Author(s):  
A. E. Chernikova ◽  
Yu. P. Potekhina

Introduction. An osteopathic examination determines the rate, the amplitude and the strength of the main rhythms (cardiac, respiratory and cranial). However, there are relatively few studies in the available literature dedicated to the influence of osteopathic correction (OC) on the characteristics of these rhythms.Goal of research — to study the influence of OC on the rate characteristics of various rhythms of the human body.Materials and methods. 88 adult osteopathic patients aged from 18 to 81 years were examined, among them 30 men and 58 women. All patients received general osteopathic examination. The rate of the cranial rhythm (RCR), respiratory rate (RR) heart rate (HR), the mobility of the nervous processes (MNP) and the connective tissue mobility (CTM) were assessed before and after the OC session.Results. Since age varied greatly in the examined group, a correlation analysis of age-related changes of the assessed rhythms was carried out. Only the CTM correlated with age (r=–0,28; p<0,05) in a statistically significant way. The rank dispersion analysis of Kruskal–Wallis also showed statistically significant difference in this indicator in different age groups (p=0,043). With the increase of years, the CTM decreases gradually. After the OC, the CTM, increased in a statistically significant way (p<0,0001). The RCR varied from 5 to 12 cycles/min in the examined group, which corresponded to the norm. After the OC, the RCR has increased in a statistically significant way (p<0,0001), the MNP has also increased (p<0,0001). The initial heart rate in the subjects varied from 56 to 94 beats/min, and in 15 % it exceeded the norm. After the OC the heart rate corresponded to the norm in all patients. The heart rate and the respiratory rate significantly decreased after the OC (р<0,0001).Conclusion. The described biorhythm changes after the OC session may be indicative of the improvement of the nervous regulation, of the normalization of the autonomic balance, of the improvement of the biomechanical properties of body tissues and of the increase of their mobility. The assessed parameters can be measured quickly without any additional equipment and can be used in order to study the results of the OC.


2012 ◽  
Vol 1 (10) ◽  
pp. 79 ◽  
Author(s):  
G. Raja* ◽  
Ivvala Anand Shaker ◽  
Inampudi Sailaja ◽  
R. Swaminathan ◽  
S. Saleem Basha ◽  
...  

Natural antioxidants can protect the human body from free radicals and retard the progress of many chronic diseases as well as lipid oxidative rancidity in foods. The role of antioxidants has protected effect against free radical damage that may cause many diseases including cancer. Primary sources of naturally occurring antioxidants are known as whole grains, fruits, and vegetables. Several studies suggest that regular consumption of nuts, mostly walnuts, may have beneficial effects against oxidative stress mediated diseases such as cardiovascular disease and cancer. The role of antioxidants has attracted much interest with respect to their protective effect against free radical damage that may cause many diseases including cancer. Juglans regia L. (walnut) contains antioxidant compounds, which are thought to contribute to their biological properties. Polyphenols, flavonoids and flavonols concentrations and antioxidant activity of Leaves, Stems and Nuts extract of Juglans regia L. as evaluated using DPPH, ABTS, Nitric acid, hydroxyl and superoxide radical scavenging activity, lipid peroxidation and total oxidation activity were determined. The antioxidant activities of Leaves, Stems and Nuts extract of Juglans regia L. were concentration dependent in different experimental models and it was observed that free radicals were scavenged by the test compounds in all the models.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Alam Zeb ◽  
Adnan Akbar

Dietary tallow was thermally oxidized at 180°C in an open fryer. The oxidized tallow (OT) and unoxidized tallow were characterized for oxidation parameters and fatty acid composition using GC-MS. Tallow samples were fed to rabbits along with 50, 100, and 150 mg/kg/day of ellagic acid (EA) for three weeks. Results revealed that the peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) significantly increased, while radical scavenging activity (RSA) of the tallow decreased significantly with oxidation. GC-MS analysis showed eight fatty acids in the tallow samples, where palmitic acid (48.5-49.7 g/100 g), linoleic acid (18.7-23.7 g/100 g), stearic acid (13.5-15.6 g/100 g), and margaric acid (6.32-6.42 g/100 g) were the major fatty acids. Animal studies showed that oxidized tallow (OT) alone or in combination with EA significantly altered the body weight of the rabbits. Serum biochemical parameters and renal function tests were affected by OT and ameliorated by EA. The toxic effects of OT on haematological indices were minimized by EA. The supplementation of OT alone had significant effects on the liver structure and functions. The coadministration of EA reduced the toxic properties of OT on the liver, by increasing the antioxidant (GSH) system. The rabbit heart was also affected by the OT, which was ameliorated by EA supplementation. These results suggested that the supplementation of EA was beneficial against the OT-induced oxidative stress and may be considered for foods containing oxidized lipids.


2020 ◽  
Vol 11 (3) ◽  
pp. 4690-4694
Author(s):  
Tahoora Taskeen. L ◽  
Hannah R ◽  
Rajeshkumar S

To determine the free radical scavenging activity of fruit formulation mediated zinc oxide nanoparticle. Zinc oxide nanoparticles are widely known for their antimicrobial agent, anti-diabetic, anti-inflammatory, wound healing, antioxidant and optic properties. Oxidative degradation of lipids, proteins, food and cosmetics involves a radical-chain reaction with release of free radicals. These free radicals are extremely reactive and can even attack relatively stable molecules like the DNA bases. With a recent rise in diseases associated with increased oxidative stress, a good antioxidant seems to be the need of the hour. Synthesis of zinc oxide nanoparticles using Punica granatum and Elettaria cardamomum extract. Characterisation of the nanoparticles using UV–Visible spectroscopy and Scanning electron microscope. It is followed by the DPPH radical scavenging assay to determine the antioxidant activity. With an increase in the concentration of zinc oxide nanoparticles, there was an increase in the percentage of inhibition. When compared to the standard, the zinc oxide nanoparticles showed increased antioxidant activity even in small concentrations. Punica granatum and Elettaria cardamomum mediated Zinc oxide nanoparticles showed considerable antioxidant property even in small quantity when compared with standard vitamin C. Further studies need to be carried out to check for its potency as a prophylactic agent.


2013 ◽  
Vol 6 (1) ◽  
pp. 3-8 ◽  
Author(s):  
Dušan Blaškovič ◽  
Petronela Žižková ◽  
Filip Držík ◽  
Jana Viskupičová ◽  
Miroslav Veverka ◽  
...  

Abstract Sarcoplasmic reticulum Ca2+-ATPase (SERCA) is the pump crucial for calcium homeostasis and its impairment results in pathologies such as myopathy, heart failure or diabetes. Modulation of SERCA activity may represent an approach to the therapy of diseases with SERCA impairment involvment. Quercetin is flavonoid known to modulate SERCA activity. We examined the effect of nine novel quercetin derivatives on the activity of the pump. We found that 5-morpholinohydroxypoxyquercetin, di(prenylferuoyl)quercetin, di(diacetylcaffeoyl)-mono-(monoacetylcaffeoyl)quercetin and monoacetylferuloylquercetin stimulated the activity of SERCA. On the contrary, monochloropivaloylquercetin, tri(chloropivaloyl)quercetin, pentaacetylquercetin, tri(trimethylgalloyl)quercetin and diquercetin inhibited the activity of the pump. To identify compounds with a potential to protect SERCA against free radicals, we assessed the free radical scavenging activity of quercetin derivatives. We also related lipophilicity, an index of the ability to incorporate into the membrane of sarcoplasmic reticulum, to the modulatury effect of quercetin derivatives on SERCA activity. In addition to its ability to stimulate SERCA, di(prenylferuloyl)quercetin showed excellent radical scavenging activity.


Sign in / Sign up

Export Citation Format

Share Document