scholarly journals Ellagic Acid Suppresses the Oxidative Stress Induced by Dietary-Oxidized Tallow

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Alam Zeb ◽  
Adnan Akbar

Dietary tallow was thermally oxidized at 180°C in an open fryer. The oxidized tallow (OT) and unoxidized tallow were characterized for oxidation parameters and fatty acid composition using GC-MS. Tallow samples were fed to rabbits along with 50, 100, and 150 mg/kg/day of ellagic acid (EA) for three weeks. Results revealed that the peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) significantly increased, while radical scavenging activity (RSA) of the tallow decreased significantly with oxidation. GC-MS analysis showed eight fatty acids in the tallow samples, where palmitic acid (48.5-49.7 g/100 g), linoleic acid (18.7-23.7 g/100 g), stearic acid (13.5-15.6 g/100 g), and margaric acid (6.32-6.42 g/100 g) were the major fatty acids. Animal studies showed that oxidized tallow (OT) alone or in combination with EA significantly altered the body weight of the rabbits. Serum biochemical parameters and renal function tests were affected by OT and ameliorated by EA. The toxic effects of OT on haematological indices were minimized by EA. The supplementation of OT alone had significant effects on the liver structure and functions. The coadministration of EA reduced the toxic properties of OT on the liver, by increasing the antioxidant (GSH) system. The rabbit heart was also affected by the OT, which was ameliorated by EA supplementation. These results suggested that the supplementation of EA was beneficial against the OT-induced oxidative stress and may be considered for foods containing oxidized lipids.

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Alam Zeb ◽  
Islam Uddin

Desi Ghee was thermally oxidized at 160°C for 9 h and characterized for peroxide value (PV), free fatty acid (FFA), thiobarbituric acid reactive substances (TBARS), radical scavenging activity (RSA), and fatty acid and cholesterol composition using GC-MS. Oxidized (OG) and normal ghee (NG) were fed to rabbits in different doses. Blood was collected for hematology and biochemical analyses after 7 and 14 days. The oxidation of desi ghee increased the PV, FFA, and TBARS values and showed a decline in the RSA values. GC-MS revealed that desi ghee was rich in saturated fatty acids (55.9 g/100 g) and significant amounts of oleic acid (26.2 g/100 g). The OG significantly decreased the body weight, which was normalized by the coadministration of NG. Serum lipid profile showed a dose dependent increase in total cholesterol, triglycerides, and low density lipoproteins (LDL) and decrease in RBCs count, hematocrit, glucose, and hemoglobin concentration with OG feeding. These parameters were normalized by coadministration of NG. Liver histopathology of OG fed groups showed bile duct dilation and necrotic changes, while normal architecture showed in NG groups, compared to control. These results indicate that NG has no significant effect on rabbits comparing with OG and that it was beneficial when coadministered with oxidized ghee.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 211
Author(s):  
Emilia Drozłowska ◽  
Artur Bartkowiak ◽  
Paulina Trocer ◽  
Mateusz Kostek ◽  
Alicja Tarnowiecka-Kuca ◽  
...  

The objective of the study was to investigate the application of flaxseed oil cake extract (FOCE) for oxidative stabilization of flaxseed oil in spray-dried emulsions. Two variants of powders with 10% and 20% of flaxseed oil (FO), FOCE, and wall material (maltodextrin and starch Capsul®) were produced by spray-drying process at 180 °C. The oxidative stability of FO was monitored during four weeks of storage at 4 °C by peroxide value (PV) and thiobarbituric acid-reactive substances (TBARS) measurements. Additionally, the fatty acids content (especially changes in α-linolenic acid content), radical scavenging activity, total polyphenolics content, color changes and free amino acids content were evaluated. Obtained results indicated that FOCE could be an adequate antioxidant dedicated for spray-dried emulsions, especially with a high content of FO (20%). These results have important implications for the flaxseed oil encapsulation with natural antioxidant agents obtained from plant-based agro-industrial by product, meeting the goals of circular economy and the idea of zero waste.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 380
Author(s):  
Katja Kramberger ◽  
Zala Jenko Pražnikar ◽  
Alenka Baruca Arbeiter ◽  
Ana Petelin ◽  
Dunja Bandelj ◽  
...  

Helichrysum arenarium (L.) Moench (abbrev. as HA) has a long tradition in European ethnomedicine and its inflorescences are approved as a herbal medicinal product. In the Mediterranean part of Europe, Helichrysum italicum (Roth) G. Don (abbrev. as HI) is more common. Since infusions from both plants are traditionally used, we aimed to compare their antioxidative potential using in vitro assays. Two morphologically distinct HI plants, HIa and HIb, were compared to a commercially available HA product. Genetic analysis using microsatellites confirmed a clear differentiation between HI and HA and suggested that HIb was a hybrid resulting from spontaneous hybridization from unknown HI subspecies. High-performance liquid chromatography–mass spectrometry analysis showed the highest amounts of hydroxycinnamic acids and total arzanol derivatives in HIa, whereas HIb was richest in monohydroxybenzoic acids, caffeic acids, and coumarins, and HA contained the highest amounts of flavonoids, especially flavanones. HIa exhibited the highest radical scavenging activity; it was more efficient in protecting different cell lines from induced oxidative stress and in inducing oxidative stress-related genes superoxide dismutase 1, catalase, and glutathione reductase 1. The antioxidative potential of HI was not only dependent on the morphological type of the plant but also on the harvest date, revealing important information for obtaining the best possible product. Considering the superior properties of HI compared to HA, the evaluation of HI as a medicinal plant could be recommended.


1994 ◽  
Vol 76 (6) ◽  
pp. 2570-2577 ◽  
Author(s):  
C. K. Sen ◽  
T. Rankinen ◽  
S. Vaisanen ◽  
R. Rauramaa

The association between exercise intensity and related oxidative stress was investigated in nine men who exercised for 30 min at their aerobic (AeT) and anaerobic (AnaeT) thresholds. We also tested the effect of oral N-acetylcysteine (NAC) on exercise-associated rapid blood glutathione (GSH) oxidation in subjects performing two identical maximal bicycle ergometer exercise (Max) tests. Before the second test (Max with NAC supplementation [Max(NAC)]), the men took 200 x 4 mg/day of NAC tablets for 2 days and an additional 800 mg on the test morning. Blood samples were drawn before, immediately after, and 24 h after the tests. Total and oxidized GSH levels in blood were determined. Plasma thiobarbituric acid-reactive substances and net peroxyl radical scavenging capacity (PSC) were assayed. Exercise-associated damage in leukocyte DNA was estimated by fluorometric analysis of DNA unwinding. A single bout of exercise at Max, AeT, and AnaeT resulted in a significant increase in blood GSH oxidation but did not influence net PSC of plasma. Although an association between a single bout of exercise and leukocyte DNA damage was apparent, this study suggests that the parameter may not serve as a sensitive index to assess the role of exercise intensity in the extent of exercise-associated oxidative stress. Plasma thiobarbituric acid-reactive substances did not change after either Max or Max(NAC) tests. NAC supplementation resulted in an increase in preexercise PSC, indicating a higher net antioxidant capacity of the plasma, but did not affect blood GSH.(ABSTRACT TRUNCATED AT 250 WORDS)


Author(s):  
Dasharath B. Shinde ◽  
Santosh S. Koratkar ◽  
Neeti Sharma ◽  
Ajinkya A. Shitole

<p><strong>Objective: </strong>To evaluate the <em>in vitro </em>antioxidant activity of liquorice (<em>Glycyrrhiza glabra) </em>against H<sub>2</sub>O<sub>2</sub> induced oxidative stress in HepG2 cell line.</p><p><strong>Methods: </strong>Antioxidant activity of methanolic extracts of <em>Glycyrrhiza glabra</em> was investigated by measuring total phenolic content using folin-ciocalteu reagent (FCR), free radical scavenging activity by DPPH and ferric reducing antioxidant power (FRAP). The presence of phenolic compounds and flavonoids in the extract was confirmed by Liquid Chromatography-Mass Spectrometry (LC-MS) analysis. Furthermore, the protective effect of methanolic extract of <em>Glycyrrhiza glabra</em> against oxidative stress induced by H<sub>2</sub>O<sub>2 </sub>in HepG2 cells was investigated by MTT assay. HepG2 cells were exposed with five different treatments viz. liquorice, H<sub>2</sub>O<sub>2</sub>, ascorbic acid, H<sub>2</sub>O<sub>2</sub>+liquorice and H<sub>2</sub>O<sub>2</sub>+ascorbic acid, to explore the effect of the extract on malondialdehyde (MDA) production, catalase activity, and glutathione reductase levels.<strong></strong></p><p><strong>Results: </strong>The total phenolic content estimated in <em>Glycyrrhiza glabra </em>extract was found to be 241.47 µg per 1000 µg/ml of methanolic extract. It was found that as the concentration of the extract was increased both the free radical scavenging activity and ferric ion reducing power was also found to increase. LC-MS analysis confirmed the presence of eight different phenolic compounds in the methanolic extract which are possibly contributing to the antioxidant activity exhibited by the extract. It was also observed that liquorice treated HepG2 cells showed lower MDA and higher glutathione and catalase levels as compared to only H<sub>2</sub>O<sub>2 </sub>treated HepG2 cells where increased MDA production, decreased glutathione reductase and catalase production was observed.</p><p><strong>Conclusion: </strong>Our results thus conclude that, the methanolic extract of <em>Glycyrrhiza glabra </em>can be used as natural supplements in various disease conditions where oxidative stress has been reported. <strong></strong></p><p> </p>


2020 ◽  
Vol 21 (7) ◽  
pp. 2501 ◽  
Author(s):  
Thomas Nury ◽  
Gérard Lizard ◽  
Anne Vejux

Neurodegenerative diseases, particularly Parkinson’s and Alzheimer’s, have common features: protein accumulation, cell death with mitochondrial involvement and oxidative stress. Patients are treated to cure the symptoms, but the treatments do not target the causes; so, the disease is not stopped. It is interesting to look at the side of nutrition which could help prevent the first signs of the disease or slow its progression in addition to existing therapeutic strategies. Lipids, whether in the form of vegetable or animal oils or in the form of fatty acids, could be incorporated into diets with the aim of preventing neurodegenerative diseases. These different lipids can inhibit the cytotoxicity induced during the pathology, whether at the level of mitochondria, oxidative stress or apoptosis and inflammation. The conclusions of the various studies cited are oriented towards the preventive use of oils or fatty acids. The future of these lipids that can be used in therapy/prevention will undoubtedly involve a better delivery to the body and to the brain by utilizing lipid encapsulation.


2013 ◽  
Vol 8 (8) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Chahrazed Hamia ◽  
Nadhir Gourine ◽  
Hadjer Boussoussa ◽  
Mokhtar Saidi ◽  
Emile M. Gaydou ◽  
...  

The essential oil obtained by hydrodistillation of the flowers of Rhanterium adpressum Coss. & Durieu was analyzed using GC and GC-MS. The essential oil was very rich in monoterpene compounds. The major components identified were the monoterpene hydrocarbons: camphene (21.8%), myrcene (19.3%) and α-pinene (17.4%). Other compounds, including limonene, β-pinene and terpinol-4-ol, were present in low content (4–6%). The composition of the fatty acids in the lipid extract obtained from the flowers was also investigated by GC and GC-MS. The main fatty acids identified were palmitic (47.4%), oleic (12.9%) and stearic acids (10.6%). The total phenolic contents and the antioxidant activities were also evaluated for both extracts. The total phenolic contents were determined using the Folin-Ciocalteu reagent and the antioxidant activities were measured using three different assays: DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical scavenging activity, FRAP (ferric reducing antioxidant potential) and a molybdenum assay. As a result of these tests, the lipid extract exhibited the highest antioxidant activities in comparison with the essential oil extract.


Antioxidants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 177 ◽  
Author(s):  
Guillermo Cásedas ◽  
Francisco Les ◽  
Carmen Choya-Foces ◽  
Martín Hugo ◽  
Víctor López

Urolithin A is a metabolite generated from ellagic acid and ellagitannins by the intestinal microbiota after consumption of fruits such as pomegranates or strawberries. The objective of this study was to determine the cytoprotective capacity of this polyphenol in Neuro-2a cells subjected to oxidative stress, as well as its direct radical scavenging activity and properties as an inhibitor of oxidases. Cells treated with this compound and H2O2 showed a greater response to oxidative stress than cells only treated with H2O2, as mitochondrial activity (MTT assay), redox state (ROS formation, lipid peroxidation), and the activity of antioxidant enzymes (CAT: catalase, SOD: superoxide dismutase, GR: glutathione reductase, GPx: glutathione peroxidase) were significantly ameliorated; additionally, urolithin A enhanced the expression of cytoprotective peroxiredoxins 1 and 3. Urolithin A also acted as a direct radical scavenger, showing values of 13.2 μM Trolox Equivalents for Oxygen Radical Absorbance Capacity (ORAC) and 5.01 µM and 152.66 µM IC50 values for superoxide and 2,2-diphenyss1-picrylhydrazyl (DPPH) radicals, respectively. Finally, inhibition of oxidizing enzymes, such as monoamine oxidase A and tyrosinase, was also detected in a dose-dependent manner. The cytoprotective effects of urolithin A could be attributed to the improvement of the cellular antioxidant battery, but also to its role as a direct radical scavenger and enzyme inhibitor of oxidases.


2019 ◽  
Vol 51 (06) ◽  
pp. 389-395 ◽  
Author(s):  
Gregorio Caimi ◽  
Baldassare Canino ◽  
Maria Montana ◽  
Caterina Urso ◽  
Vincenzo Calandrino ◽  
...  

AbstractThe association between obesity and cardiovascular diseases has a multifactorial pathogenesis, including the synthesis of inflammatory molecules, the increase in oxidative stress and the dysregulation of the matrix metalloprotease (MMP) concentration and activity. In a group of adults with obesity, divided in 2 subgroups according to the body mass index (BMI), we examined lipid peroxidation, expressed as thiobarbituric acid-reactive substances (TBARS), protein oxidation, expressed as protein carbonyl groups (PCs), plasma gelatinases (MMP-2 and MMP-9), and their tissue inhibitors (TIMP-1 and TIMP-2). In the whole group, as well as in the 2 subgroups (with BMI 30–35 or BMI>35) of obese subjects, we observed an increase in TBARS, PCs, MMP-2, and MMP-9, and also TIMP-1 and TIMP-2 in comparison with the control group. A positive correlation between TBARS and PCs emerged in obese subjects and persisted after dividing obese subjects according to BMI. The correlation between MMP-2 and TIMP-2 was not statistically significant, while a significant correlation was present between MMP-9 and TIMP-1. The correlations between the markers of oxidative stress (TBARS and PCs) and those of the MMP/TIMP profile indicated a more marked influence of protein oxidation on MMPs and TIMPs in comparison with TBARS. The innovative aspect of our study was the simultaneous evaluation of oxidative stress markers and MMP/TIMP profile in adult obese subjects. We observed significant alterations and correlations that may negatively influence the clinical course of the disease.


Sign in / Sign up

Export Citation Format

Share Document