Titonia Utilization and The Rest Of Soybean Harvest In The Alternative As Fertilizer Ultisol Fertility Improvement And Soybean Crop Production

2017 ◽  
Vol 1 (2) ◽  
pp. 18
Author(s):  
Yadi Jufri, Syafrimen Yasin, Agustian, Teguh Budi Prasetyo, Nurhajati Hakim

Utilization Titonia and soybean crop residues (straw soybean) as compost, is onealternative fertilizer to improve soil fertility Ultisol. This study aimed to determinethe effect of a mixture of compost and straw Titonia soy, lime and fertilizers inimproving soil fertility and soybean crop production. The research was conductedat experimental field LimauManis and laboratory analysis conducted at theLaboratory P3IN Andalas University, Padang. Research using Random Design(RBD), which consists of 10 treatments with 3 replications were tested. The resultsshowed that administration of lime, compost and fertilizers give effect to thechemical characteristics Ultisol namely against soil pH value, the content of N, Pand K soil. The provision of artificial fertilizers as much as 50% of the soybeancrop needs, provide higher impact than that of artificial fertilizers as much as 25%of the increase in soil fertility and the growth and production of soybean plants.Production of dry seeds of soybean highest weight obtained amounted to 1.85 tons /ha in the treatment of lime dolomite 500 kg / ha + compost mixture (5 tonsTitonia/ha with 5 tons of soybean straw/ha) + NK fertilizers by 50% of the soybeancrop needs (treatment G).

2018 ◽  
Vol 7 (S1) ◽  
pp. 54-57
Author(s):  
P. Sindhu ◽  
G. Indirani

Agriculture is the main occupation of our country and it plays a vital role in our country. Using too much of fertilizers may lead to the inferior quality of the crop production. So the measurement of soil nutrients is greatly required for better plant growth. Determining the amount of nutrients in the soil is the key function. pH value is also one of the most important and informative soil parameter to detect the soil fertility and it is measured to identify the soil fertility. In the proposed system, it determines the crops which are suitable for the particular soil type. It will analyze moisture content, temperature and humidity in soil at real time and it will also suggest the crops based on determined PH of soil. This system is proposed to help the farmers to increase the production and the suggestions are made through the mobile application.


Author(s):  
Him Lal Shrestha ◽  
Trishna Bhandari ◽  
Bhaskar Karky ◽  
Rajan Kotru

Crop productivity is directly dependent to soil fertility. High soil organic carbon (SOC) content in soil is vital as it leads to improved soil quality, increased productivity, and stable soil-aggregates. In addition, with the signing of the climate agreement, there is growing interest in carbon sequestration in landscapes. This paper looks at how SOC can be increased so that it not only contributes to reduction of CO2, but also translates to increased food production thereby enhancing food security. This synergy between mitigation and enhancing food security is even more relevant for mountain landscapes of the Hindu Kush Himalayan (HKH) region where there remains huge potential to increase CO2 sequestration and simultaneously address food security in the chronic food deficit villages. Soil samples were collected from seven transects each in Bajhang and Mustang and from 4 land use types in each transect. Samples of soils were taken from two depths in each plot; 0-15 cm below the soil surface and 15-30 cm below the soil surface to compare the top soil and subsoil dynamics of the soil nutrients. The lab analysis was performed to assess the soil texture, soil color, soil acidity in 'power of hydrogen' (pH), macro-nutrients as soil fertility. Secondary data was used to analyze the level of food deficit in the villages. The result shows that most of the sample soils from Mustang were clay (82.1%) which is 46 samples out of 56. The pH value of soil from Bajhang ranged from 5.29 to 9.09. The pH value of soil ranged from 5.65 to 8.81 in Mustang. SOC contents of sampled soils from Bajhang ranged from 0.20% to 7.69% with mean amount of 2.47% ± 0.17. SOC contents of sampled soils from Mustang ranged from 0.51% to 8.56% with mean amount of 2.60% ± 0.25. By land use type, forest land had the highest carbon (C) content of 53.61 t ha-1 in Bajhang whereas in Mustang, agricultural land had the highest C content of 52.02 tons ha-1. Based on these data, we can say that there is potential for increasing SOC through improved soil health and crop production and soil. Sustainable soil management should be practiced for higher productivity. Livestock may also provide farmyard manure, which can be used to fertilize cultivated soils, which increases soil productivity. Increasing productivity would aid in increasing the access and availability of food in these mountain villages.


2019 ◽  
pp. 209-217
Author(s):  
Alemayehu Biri ◽  
Kibret Ketema ◽  
Solomon Ayele ◽  
Dagnachew Lule

Participatory rural appraisals (PRA) were conducted in July 14 to 30, 2016 in AGP-II project target districts: Erar waldiya and Dire Teyara in Harari region of Ethiopia. PRA exercises were conducted using various PRA tools which included review of secondary data, focus group discussions, field observations (Transact walk) and pair-wise ranking. The tools were used to identify the biophysical and socio-economic constraints, opportunities and developments within the kebeles. Agricultural and animal productions are common in the surveyed Kebeles of the AGP-II target districts. Mixed farming is widely practiced in the kebeles of both districts. Staple food crops like maize and sorghum, and cash crops like vegetables and khat (Catha edulis Forsk) are commonly produced across all targets of AGP-II districts and also as region as well. Growing maize and sorghum in khat alleys is another cropping system practiced in both districts. The PRA work has also identified various categories of constraints to increasing crop production in the areas. The major bottlenecks include lack of improved crop varieties, low soil fertility, deforestation, moisture stress, disease and insect pests, and lack of awareness on soil fertility crop management. In most of the PRA Kebeles, it was found that continuous cropping, complete removal of crop residues from farm lands, soil erosion, deforestation, absence of fallowing, and inadequate soil fertility management practices are the major causes for low soil fertility and crop yields. In most cases, farmers apply Di-ammonium phosphate (DAP), urea and farmyard manure to improve soil fertility and crop yield. However, very few farmers use integrated application of chemical fertilizers and farmyard manure for crop production. In addition, no scientifically formulated and recommended fertilizer rates are available for the specific soils and environments. Thus, due to the lack of scientifically recommended rates of fertilizers and high costs of mineral fertilizers, farmers often use smaller rates of mineral N and P fertilizers based on haphazard estimations.


2016 ◽  
Vol 47 (2) ◽  
pp. 180
Author(s):  
S.A Mashi ◽  
A. Yaro

In Nigeria’s drylands, profitable crop production requires adequate soil fertility management. This study examines the effects of farmer-managed practices on soil fertility in Sabke catchment of the drylands. Seven sites under permanent cropland, fallow land, grassland, shrubland, orchard land, intercropping land and woodland distributed on four transects were selected across the catchment. At every site, five replicate soil samples were collected from 0-15cm (topsoil) and 20-30cm (subsoil) and analysed for C, N, P, Ca, Mg, K and Na. Higher topsoil values of most of the properties were observed under cropland and intercropping sites. The two cultivated plots receive annual applications of organic manure in addition to chemical fertilizer and crops residue retention while the other plots are not. Thus, improvement in soil organic matter and nutrients would be expected in soils of the area with high rate of application of manure and chemical fertilizer, and retention of crop residues


2021 ◽  
Vol 157 ◽  
pp. 16172-16181
Author(s):  
Désiré Jean Pascal Lompo ◽  
Lambiénou Yé ◽  
Abdoudramane Balboné ◽  
Siélé Ibrahima Sori

Objectifs : L’une des contraintes majeures des systèmes de production agricole au Burkina Faso demeure la dégradation des sols. La présente étude menée à Kongoussi (Burkina Faso) avait pour objectif de déterminer les effets du Biocharbon utilisé comme amendement sur le sol et les paramètres agronomiques du mil. Méthodologie et résultats : Un dispositif en blocs simple comportant 3 traitements en 5 répétitions a été utilisé. Les traitements comprenaient T0= Fumier + NPK, T1= Biocharbon + Fumier + NPK, T2= Biocharbon + NPK. Les matières fertilisantes ont induit une amélioration des paramètres chimiques du sol. Les meilleurs paramètres chimiques du sol ont été observés avec T1 (Biocharbon + Fumier + NPK) qui a permis l’obtention du plus grand rendement grains du mil comparativement à ceux obtenus avec les traitements T0 (Fumier + NPK) et T2 (Biocharbon + NPK) qui étaient statistiquement équivalents. Conclusions and application des résultats : La combinaison du biocharbon au fumier améliore la fertilité du sol et le rendement du mil. Cela constitue une solution intéressante en vue restaurer et ou maintenir la fertilité des sols, accroitre les rendements des cultures tout en réduisant les effets néfastes des changements climatiques à travers la séquestration du carbone dans le sol. La technologie du Biocharbon constitue une alternative intéressante pour la valorisation des résidus culturaux peu ou pas exploités pour améliorer durablement la qualité des sols et assurer la sécurité alimentaire tout en protégeant l’environnement. Mots-clés : fertilité des sols ; Biocharbon ; amendement organique ; séquestration du carbone, ABSTRACT Combined effects of biocharbon and manure on physico-chemical properties of a tropical ferruginous soil under millet cultivation in the semi-arid zone of Burkina Faso Objectives: One of the major constraints of agricultural production systems in Burkina Faso is the low soil fertility. The objective of this study conducted in Kongoussi (Burkina Faso) was to determine the effects of Biochar used as soil amendment in combination with manure on soil fertility and some agronomic parameters of millet. Methodology and results: A simple block disign with 3 treatments in 5 replicates was used. The randomly distributed treatments included T0= Manure + NPK, T1= Biochar + Manure + NPK, T2= Biochar + NPK. The Lompo et al., J. Appl. Biosci. 2021 Effets combinés du biocharbon et du fumier sur les propriétés physico-chimiques d’un sol ferrugineux tropical sous culture de mil en zone semi-aride du Burkina Faso. 16173 applied fertilizers improved some soil chemical parameters. The best soil chemical parameters were observed with T1 (Biochar + Manure + NPK), which induced the highest millet grain yield as compared to those obtained with T0 (Manure + NPK) and T2 (Biochar + NPK), which were statistically equivalent. Conclusions and application of findings : The combination of biochar with manure improves soil fertility and millet yield. This is an interesting solution to restore and/or maintain soil fertility, to increase crop yields while reducing the adverse effects of climate change through carbon sequestration into the soil. The Biochar technology is an interesting alternative for the valorization of crop residues little or not well exploited in order to sustainably improve soil quality and food security while protecting the environment. Keywords: Crop production ; Soil fertility ; Biochar ; organic amendment, carbon sequestration.


2019 ◽  
Vol 1 (2) ◽  
pp. 41-47
Author(s):  
Ferdinandus Ronsumbre ◽  
Yosefina Mangera ◽  
Ni luh Sri Suryaningsih

The research of response of growth and production of cassava plants of variety Adira 1 and Adira 4 towards Vam Mikorhyza fertilizer is conducted to figure out the response of plants towards fertilizer given so that the plants can reach good growth and production. This research used the random design of the factorial group, which consists of 2 factors. The first factor was the variety, consists of 2 variety they were variety Adira 1 (V1) and variety Adira 4 (V2) and the second factor was fertilizer, consists of 2 fertilizer they were Vam Mikorhyza (P1) and compost (P2). Each factor was combined into four treatment combinations which consist of treatment V1P1, V1P2, V2P1, and V2P2. The four treatment combinations were repeated 3 times so it was obtained 12 partition units of the experiment, which was analyzed by analysis of variance. The highest weight of tubers production obtain from Adira 4 variety (V2) was the production reach 28,833 ton ha-1, while the lowest one obtain from Adira 1 variety (V1) with average produced of tubers only 24,683 ton ha-1.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1276
Author(s):  
Vaida Steponavičienė ◽  
Aušra Marcinkevičienė ◽  
Lina Marija Butkevičienė ◽  
Lina Skinulienė ◽  
Vaclovas Bogužas

The composition of weed communities in agricultural crops is dependent on soil properties and the applied agronomic practices. The current study determined the effect of different tillage systems and crop residue on the soil weed community composition. The research programme encompassed 2013–2015 in a long-term field experiment located in the Experimental Station of Vytautas Magnus University in Lithuania. The soil type in the experimental field was qualified as Endocalcaric Stagnosol (Aric, Drainic, Ruptic, Amphisiltic). Weeds were categorised into communities according to soil pH, nitrogen and moisture indicators. The results of investigations were grouped using cluster analysis. Agricultural crops were dominated by different weed species depending on the soil pH and moisture. Weed species were relatively more frequent indicating nitrogen-rich and very nitrogen-rich soils. In the reduced tillage and no-tillage systems, an increase in the abundance of weed species indicating moderate acidity and low acidity, moderately wet and wet, nitrogen-rich and very nitrogen-rich soils was observed. The application of plant residues decreased the weed species abundance. In the reduced tillage and no-tillage systems, the quantitative distribution of weed was often uneven. By evaluating the association of weed communities with groups of different tillage systems with or without plant residues, their control can be optimised.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 373
Author(s):  
Jonathan Suazo-Hernández ◽  
Erwin Klumpp ◽  
Nicolás Arancibia-Miranda ◽  
Patricia Poblete-Grant ◽  
Alejandra Jara ◽  
...  

Engineered nanoparticles (ENPs) present in consumer products are being released into the agricultural systems. There is little information about the direct effect of ENPs on phosphorus (P) availability, which is an essential nutrient for crop growthnaturally occurring in agricultural soils. The present study examined the effect of 1, 3, and 5% doses of Cu0 or Ag0 ENPs stabilized with L-ascorbic acid (suspension pH 2–3) on P ad- and desorption in an agricultural Andisol with total organic matter (T-OM) and with partial removal of organic matter (R-OM) by performing batch experiments. Our results showed that the adsorption kinetics data of H2PO4− on T-OM and R-OM soil samples with and without ENPs were adequately described by the pseudo-second-order (PSO) and Elovich models. The adsorption isotherm data of H2PO4− from T-OM and R-OM soil samples following ENPs addition were better fitted by the Langmuir model than the Freundlich model. When the Cu0 or Ag0 ENPs doses were increased, the pH value decreased and H2PO4− adsorption increased on T-OM and R-OM. The H2PO4− desorption (%) was lower with Cu0 ENPs than Ag0 ENPs. Overall, the incorporation of ENPs into Andisols generated an increase in P retention, which may affect agricultural crop production.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4836 ◽  
Author(s):  
Marie-Pierre Hiel ◽  
Sophie Barbieux ◽  
Jérôme Pierreux ◽  
Claire Olivier ◽  
Guillaume Lobet ◽  
...  

Society is increasingly demanding a more sustainable management of agro-ecosystems in a context of climate change and an ever growing global population. The fate of crop residues is one of the important management aspects under debate, since it represents an unneglectable quantity of organic matter which can be kept in or removed from the agro-ecosystem. The topic of residue management is not new, but the need for global conclusion on the impact of crop residue management on the agro-ecosystem linked to local pedo-climatic conditions has become apparent with an increasing amount of studies showing a diversity of conclusions. This study specifically focusses on temperate climate and loamy soil using a seven-year data set. Between 2008 and 2016, we compared four contrasting residue management strategies differing in the amount of crop residues returned to the soil (incorporation vs. exportation of residues) and in the type of tillage (reduced tillage (10 cm depth) vs. conventional tillage (ploughing at 25 cm depth)) in a field experiment. We assessed the impact of the crop residue management on crop production (three crops—winter wheat, faba bean and maize—cultivated over six cropping seasons), soil organic carbon content, nitrate (${\mathrm{NO}}_{3}^{-}$), phosphorus (P) and potassium (K) soil content and uptake by the crops. The main differences came primarily from the tillage practice and less from the restitution or removal of residues. All years and crops combined, conventional tillage resulted in a yield advantage of 3.4% as compared to reduced tillage, which can be partly explained by a lower germination rate observed under reduced tillage, especially during drier years. On average, only small differences were observed for total organic carbon (TOC) content of the soil, but reduced tillage resulted in a very clear stratification of TOC and also of P and K content as compared to conventional tillage. We observed no effect of residue management on the ${\mathrm{NO}}_{3}^{-}$ content, since the effect of fertilization dominated the effect of residue management. To confirm the results and enhance early tendencies, we believe that the experiment should be followed up in the future to observe whether more consistent changes in the whole agro-ecosystem functioning are present on the long term when managing residues with contrasted strategies.


Sign in / Sign up

Export Citation Format

Share Document