scholarly journals Analysis of Broadest Impact Implementation for a Developing Point of Care Device Using Antibody Antigen Reactions

2021 ◽  
Vol 6 (Spring 2021) ◽  
Author(s):  
Sienna Dugan ◽  
Gabrielle J. Gonzales ◽  
Kelly Little

With the recent launch of the Global Development Lab in the Hunter and Stephanie Hunt Institute for Engineering and Humanity, fellows, faculty, and industry professionals have been working to create meaningful solutions to promote a resilient humanity, addressing the UN’s Sustainable Development Goals and challenges. The Institute has taken on Dr. Ali Beskok’s project, the development of a low cost, portable, Point-of-Care-Device for humanitarian and health applications. This paper provides a systematic review of current Point-of-Care-Devices using antibody antigen reactions. Additionally, it provides aspects of a market analysis and a literature review. Its overarching goal is to make recommendations regarding a disease the developing device could test for through antibody antigen reactions that would most positively affect global health. Traditionally, biomedical engineers have developed technologies in response to the needs of the developed world’s medical community. These approaches often do not address the needs of the majority of the world’s peoples afflicted with both communicable and non-communicable diseases as the developments are far too costly and those with most need have, at best, limited access to supporting clinical laboratory infrastructure in developing countries. A gap in care has emerged as a result of these conditions. As a result, Drs. Beskok and Koklu have developed a Lab-on-a-Chip technology that can test for a chosen disease with a turnaround time of just a few seconds and a detection limit of 1 ng of antigen per 1 mL of sample fluid. In contrast to other commonly used PoCD’s, this technology can be adapted for detection of various diseases in various settings. This is a great improvement to current devices on the market in specificity, sensitivity, and ease of use, therefore making it particularly useful in high-throughput, low-skill staffing environments. In creating disease selection criteria for Dr. Beskok and his team’s device, several factors were taken into consideration. Generally, the selection criteria consists of diseases that result in a high DALY value, are communicable, identifiable with antibody-antigen reactions, and can be tested for using urine. The diseases that were identified with this criterion were Tuberculosis and Malaria. Various antibody-antigen recommendations for diagnosis, advantages, and limitations of the proposed Point-of-Care-Device are discussed in the Proposed Disease section. In addition, current funding for each disease is overviewed. In order to make the greatest impact, deployment of the PoCD in the Sub-Saharan region, most specifically the Democratic Republic of Congo and Sierra Leone are recommended. Furthermore, children under the age of 5 who suffer from malnutrition should be given special attention. Focusing in these locations and populations will best aid in accomplishing the third Sustainable Development Goal set out by the UN: to ensure healthy lives and promote wellbeing for all at all ages.

Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4916 ◽  
Author(s):  
Qiaoyun Wu ◽  
Yunzhe Zhang ◽  
Qian Yang ◽  
Ning Yuan ◽  
Wei Zhang

The vital importance of rapid and accurate detection of food borne pathogens has driven the development of biosensor to prevent food borne illness outbreaks. Electrochemical DNA biosensors offer such merits as rapid response, high sensitivity, low cost, and ease of use. This review covers the following three aspects: food borne pathogens and conventional detection methods, the design and fabrication of electrochemical DNA biosensors and several techniques for improving sensitivity of biosensors. We highlight the main bioreceptors and immobilizing methods on sensing interface, electrochemical techniques, electrochemical indicators, nanotechnology, and nucleic acid-based amplification. Finally, in view of the existing shortcomings of electrochemical DNA biosensors in the field of food borne pathogen detection, we also predict and prospect future research focuses from the following five aspects: specific bioreceptors (improving specificity), nanomaterials (enhancing sensitivity), microfluidic chip technology (realizing automate operation), paper-based biosensors (reducing detection cost), and smartphones or other mobile devices (simplifying signal reading devices).


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Paul A Gurbel ◽  
Kevin P Bliden ◽  
Amy L Monroe ◽  
Wendi L Slusser ◽  
Martin Gesheff ◽  
...  

Background: Thrombelastography (TEG) is an established but labor intensive method for assessing global hemostasis for the management of bleeding and thrombotic risk in surgical, cardiovascular, and trauma patients. We performed the initial validation study of the first true point-of-care TEG, the CORA® (COagulation Resonance Analyzer or TEG-6S system). CORA uses resonance-frequency viscoelasticity measurements and a disposable multi-channel microfluidic cartridge to assess hemostasis and response to antiplatelet therapy. Methods: TEG assays (n=5,100) were performed from the blood of healthy volunteers (n=160) and patients undergoing coronary revascularization (n=300) collected at 3 hospitals. Quality controls were also assayed. The performance of the TEG-6S system was compared with the conventional TEG 5000 system in accordance with Clinical Laboratory Standards Institute Guidelines. Results: Regression analysis demonstrated a strong correlation (R) between the two systems by all standard measures and a lower coefficient of variation (CV %) with the CORA system at all hospitals (Table). Receiver operating characteristic (ROC) curve analysis showed an excellent correlation between platelet mapping methods (AUC≥0.90, p<0.001) and there was a substantial agreement for measuring antiplatelet response to aspirin (k=0.67, agreement=87%) and P2Y12 inhibitors (k=0.69, agreement=86%). Conclusion: The new point-of-care TEG-6S system is associated with improved precision, greater ease of use, and a strong correlation as compared to the conventional TEG 5000 system. The TEG-6S will facilitate future trials of personalized antiplatelet therapy and improve the assessment of bleeding and thrombotic risk in cardiovascular, surgical, and trauma patients.


2019 ◽  
Vol 58 (1) ◽  
Author(s):  
Lauren M. Petersen ◽  
Isabella W. Martin ◽  
Wayne E. Moschetti ◽  
Colleen M. Kershaw ◽  
Gregory J. Tsongalis

ABSTRACT Metagenomic sequencing for infectious disease diagnostics is an important tool that holds promise for use in the clinical laboratory. Challenges for implementation so far include high cost, the length of time to results, and the need for technical and bioinformatics expertise. However, the recent technological innovation of nanopore sequencing from Oxford Nanopore Technologies (ONT) has the potential to address these challenges. ONT sequencing is an attractive platform for clinical laboratories to adopt due to its low cost, rapid turnaround time, and user-friendly bioinformatics pipelines. However, this method still faces the problem of base-calling accuracy compared to other platforms. This review highlights the general challenges of pathogen detection in clinical specimens by metagenomic sequencing, the advantages and disadvantages of the ONT platform, and how research to date supports the potential future use of nanopore sequencing in infectious disease diagnostics.


2016 ◽  
Author(s):  
Antonina A. Votintseva ◽  
Phelim Bradley ◽  
Louise Pankhurst ◽  
Carlos del Ojo Elias ◽  
Matthew Loose ◽  
...  

AbstractRoutine full characterization of Mycobacterium tuberculosis (TB) is culture-based, taking many weeks. Whole-genome sequencing (WGS) can generate antibiotic susceptibility profiles to inform treatment, augmented with strain information for global surveillance; such data could be transformative if provided at or near point of care.We demonstrate a low-cost DNA extraction method for TB WGS direct from patient samples. We initially evaluated the method using the Illumina MiSeq sequencer (40 smear-positive respiratory samples, obtained after routine clinical testing, and 27 matched liquid cultures). M. tuberculosis was identified in all 39 samples from which DNA was successfully extracted. Sufficient data for antibiotic susceptibility prediction was obtained from 24 (62%) samples; all results were concordant with reference laboratory phenotypes. Phylogenetic placement was concordant between direct and cultured samples. Using an Illumina MiSeq/MiniSeq the workflow from patient sample to results can be completed in 44/16 hours at a cost of £96/£198 per sample.We then employed a non-specific PCR-based library preparation method for sequencing on an Oxford Nanopore Technologies MinION sequencer. We applied this to cultured Mycobacterium bovis BCG strain (BCG), and to combined culture-negative sputum DNA and BCG DNA. For the latest flowcell, the estimated turnaround time from patient to identification of BCG was 6 hours, with full susceptibility and surveillance results 2 hours later. Antibiotic susceptibility predictions were fully concordant. A critical advantage of the MinION is the ability to continue sequencing until sufficient coverage is obtained, providing a potential solution to the problem of variable amounts of M. tuberculosis in direct samples.


2021 ◽  
Author(s):  
Jesse Gitaka ◽  
Eva Muthamia ◽  
Samuel Mbugua ◽  
Mary Mungai ◽  
Gama Bandawe ◽  
...  

Abstract Background: The COVID-19 pandemic has resulted in a need for rapid identification of infectious cases. Testing barriers have prohibited adequate screening for SARS COV2, resulting in significant delays in treatment provision and commencement of outbreak control measures. This study aimed to generate evidence on the performance and implementation characteristics of the BD Veritor rapid antigen test as compared to the gold standard test for diagnosis of SARS COV2 in Kenya. Methods: This was a field test performance evaluation in symptomatic and asymptomatic adults undergoing testing for SARS COV2. Recruited participants were classified as SARS-CoV2-positive based on the locally implemented gold standard reverse transcription polymerase chain reaction (RT-PCR) test performed on nasopharyngeal swabs. 272 antigen tests were performed with simultaneous gold standard testing, allowing us to estimate sensitivity, specificity, positive and negative predictive values for the BD Veritor rapid antigen test platform. Implementation characteristics were assessed using the Consolidated Framework for Implementation Research for feasibility, acceptability, turn-around time, and ease-of-use metrics. Results and Discussion: We enrolled 97 PCR negative symptomatic and 128 PCR negative asymptomatic, and 28 PCR positive symptomatic and 19 PCR positive asymptomatic participants. Compared to the gold standard, the sensitivity of the BD Veritor antigen test was 94% (95% confidence interval [CI] 86.6 to 100.0) while the specificity was 98% (95% confidence interval [CI] 96 to 100). The sensitivity of BD Veritor antigen test was higher among symptomatic (100%) compared to asymptomatic (84%) participants, although this difference was not statistically significant. There was also a lack of association between cycle threshold value and sensitivity of BD Veritor test. The BD Veritor test had quick turnaround time and minimal resource requirements, and laboratory personnel conducting testing felt that it was easier to use than the gold standard RT-PCR. Conclusion: The BD Veritor rapid antigen test exhibited excellent sensitivity and specificity when used to detect SARS-CoV-2 infection among both symptomatic and asymptomatic individuals in varied population settings in Kenya. It was feasible to implement and easy to use, with rapid turnaround time.


2014 ◽  
Vol 22 (2) ◽  
pp. 137-147 ◽  
Author(s):  
Muhammad G. Morshed ◽  
Ameeta E. Singh

ABSTRACTComplexities in the diagnosis of syphilis continue to challenge clinicians. While direct tests (e.g., microscopy or PCR) are helpful in early syphilis, the mainstay of diagnosis remains serologic tests. The traditional algorithm using a nontreponemal test (NTT) followed by a treponemal test (TT) remains the standard in many parts of the world. More recently, the ability to automate the TT has led to the increasingly widespread use of reverse algorithms using treponemal enzyme immunoassays (EIAs). Rapid, point-of-care TTs are in widespread use in developing countries because of low cost, ease of use, and reasonable performance. However, none of the current diagnostic algorithms are able to distinguish current from previously treated infections. In addition, the reversal of traditional syphilis algorithms has led to uncertainty in the clinical management of patients. The interpretation of syphilis tests is further complicated by the lack of a reliable gold standard for syphilis diagnostics, and the newer tests can result in false-positive reactions similar to those seen with older tests. Little progress has been made in the area of serologic diagnostics for congenital syphilis, which requires assessment of maternal treatment and serologic response as well as clinical and laboratory investigation of the neonate for appropriate management. The diagnosis of neurosyphilis continues to require the collection of cerebrospinal fluid for a combination of NTT and TT, and, while newer treponemal EIAs look promising, more studies are needed to confirm their utility. This article reviews current tests and discusses current controversies in syphilis diagnosis, with a focus on serologic tests.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chishimba Mubanga ◽  
Kabemba E. Mwape ◽  
Isaac K. Phiri ◽  
Chiara Trevisan ◽  
Mwemezi Kabululu ◽  
...  

Abstract Background Diagnostic test evaluation includes measures of performance and assessment of operational characteristics. The latter focuses on end-user understanding of instructions to perform the test, ease of use, test turnaround time and ease of result interpretation. This study aimed to assess user comprehension of training for and ease of use of a Taenia solium point of care test (TS POC) evaluated in a community and hospital setting in Zambia and Tanzania, respectively. Methods The TS POC is a three-step in-house-produced rapid diagnostic test (RDT) for the simultaneous detection of taeniosis (TST) and cysticercosis (TSCC) antibodies. Data collected by administering questionnaires to 29 end-users and from the main evaluation database was analyzed quantitatively. Results End-users (28/29, 97%) perceived that the training they received for performing the test was sufficient. They performed 4080 tests, of which 80 were invalid. The community-based study and TST tests had higher invalid rates. The overall result interpretation was within the acceptable range of RDTs with an overall disagreement between readers of 3.3%. The Kappa coefficient of agreement was 85 and 82% for TSCC and TST, respectively. There was more disagreement among readers in the community-based study. Conclusion End-users rated the TS POC kit moderate in terms of ease of use citing long test turnaround time and difficulties in using the blood transfer device. Overall, the operational performance of the TS POC kit and end-users was within the established acceptable performance range.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noori Kim ◽  
Kyungsup Han ◽  
Pei-Chen Su ◽  
Insup Kim ◽  
Yong-Jin Yoon

AbstractLabel-free optical biosensors have received tremendous attention in point-of-care testing, especially in the emerging pandemic, COVID-19, since they advance toward early-detection, rapid, real-time, ease-of-use, and low-cost paradigms. Protein biomarkers testings require less sample modification process compared to nucleic-acid biomarkers’. However, challenges always are in detecting low-concentration for early-stage diagnosis. Here we present a Rotationally Focused Flow (RFF) method to enhance sensitivity(wavelength shift) of label-free optical sensors by increasing the detection probability of protein-based molecules. The RFF is structured by adding a less-dense fluid to focus the target-fluid in a T-shaped microchannel. It is integrated with label-free silicon microring resonators interacting with biotin-streptavidin. The suggested mechanism has demonstrated 0.19 fM concentration detection along with a significant magnitudes sensitivity enhancement compared to single flow methods. Verified by both CFD simulations and fluorescent flow-experiments, this study provides a promising proof-of-concept platform for next-generation lab-on-a-chip bioanalytics such as ultrafast and early-detection of COVID-19.


Sign in / Sign up

Export Citation Format

Share Document