scholarly journals Oxidative stress and antioxidant defense in Brassicaceae plants under abiotic stresses

2021 ◽  
Vol 5 (1) ◽  
pp. 232-244
Author(s):  
Faiçal Brini ◽  
◽  
Walid Saibi

Brassicaceae plants, as an important source of primary and secondary metabolites, are becoming a research model in plant science. Plants have developed different ways to ward off environmental stress factors. This is lead to the activation of various defense mechanisms resulting in a qualitative and/or quantitative change in plant metabolite production. Reactive oxygen species (ROS) is being continuously produced in cell during normal cellular processes. Under stress conditions, there are excessive production of ROS causing progressive oxidative damage and ultimately cell death. Despite their destructive activity, ROS are considered as important secondary messengers of signaling pathway that control metabolic fluxes and a variety of cellular processes. Plant response to environmental stress depends on the delicate equilibrium between ROS production, and their scavenging. This balance of ROS level is required for performing its dual role of acting as a defensive molecule in signaling pathway or a destructive molecule. Efficient scavenging of ROS produced during various environmental stresses requires the action of several non-enzymatic as well as enzymatic antioxidants present in the tissues. In this review, we describe the ROS production and its turnover and the role of ROS as messenger molecules as well as inducers of oxidative damage in Brassicaceae plants. Further, the antioxidant defense mechanisms comprising of enzymatic and non-enzymatic antioxidants have been discussed. Keywords: Abiotic stress, Antioxidant defence, Brassicaceae, Oxidative stress, ROS

Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 105
Author(s):  
Francesco Sabbatino ◽  
Valeria Conti ◽  
Luigi Liguori ◽  
Giovanna Polcaro ◽  
Graziamaria Corbi ◽  
...  

Reactive oxygen species (ROS) are molecules involved in signal transduction pathways with both beneficial and detrimental effects on human cells. ROS are generated by many cellular processes including mitochondrial respiration, metabolism and enzymatic activities. In physiological conditions, ROS levels are well-balanced by antioxidative detoxification systems. In contrast, in pathological conditions such as cardiovascular, neurological and cancer diseases, ROS production exceeds the antioxidative detoxification capacity of cells, leading to cellular damages and death. In this review, we will first describe the biology and mechanisms of ROS mediated oxidative stress in cardiovascular disease. Second, we will review the role of oxidative stress mediated by oncological treatments in inducing cardiovascular disease. Lastly, we will discuss the strategies that potentially counteract the oxidative stress in order to fight the onset and progression of cardiovascular disease, including that induced by oncological treatments.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1075
Author(s):  
Steffi Goffart ◽  
Petra Tikkanen ◽  
Craig Michell ◽  
Trevor Wilson ◽  
Jaakko L. O. Pohjoismäki

Oxidative stress can be modeled using various different experimental approaches, such as exposing the cells or organisms to oxidative chemicals. However, the actual effects of these chemicals, outside of the immediate measured effect, have attracted relatively little attention. We show here that three commonly used oxidants, menadione, potassium bromate, and hydrogen peroxide, while known to function differently, also elicit different types of responses in HEK293T cells. Menadione and bromate exposure mainly trigger an integrated stress response, whereas hydrogen peroxide affects cellular processes more diversely. Interestingly, acute oxidative stress does not universally cause notable induction of DNA repair or antioxidant defense mechanisms. We also provide evidence that cells with previous experience of oxidative stress show adaptive changes in their responses when the stress is renewed. Our results urge caution when comparing studies where different sources of oxidative stress have been used or when generalizing the findings of these studies to other oxidant types or tissues.


2021 ◽  
Vol 22 (24) ◽  
pp. 13315
Author(s):  
Kyung Hee Lee ◽  
Myeounghoon Cha ◽  
Bae Hwan Lee

To counteract oxidative stress and associated brain diseases, antioxidant systems rescue neuronal cells from oxidative stress by neutralizing reactive oxygen species and preserving gene regulation. It is necessary to understand the communication and interactions between brain cells, including neurons, astrocytes and microglia, to understand oxidative stress and antioxidant mechanisms. Here, the role of glia in the protection of neurons against oxidative injury and glia–neuron crosstalk to maintain antioxidant defense mechanisms and brain protection are reviewed. The first part of this review focuses on the role of glia in the morphological and physiological changes required for brain homeostasis under oxidative stress and antioxidant defense mechanisms. The second part focuses on the essential crosstalk between neurons and glia for redox balance in the brain for protection against oxidative stress.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 261
Author(s):  
Md. Mahadi Hasan ◽  
Milan Skalicky ◽  
Mohammad Shah Jahan ◽  
Md. Nazmul Hossain ◽  
Zunaira Anwar ◽  
...  

In recent years, research on spermine (Spm) has turned up a lot of new information about this essential polyamine, especially as it is able to counteract damage from abiotic stresses. Spm has been shown to protect plants from a variety of environmental insults, but whether it can prevent the adverse effects of drought has not yet been reported. Drought stress increases endogenous Spm in plants and exogenous application of Spm improves the plants’ ability to tolerate drought stress. Spm’s role in enhancing antioxidant defense mechanisms, glyoxalase systems, methylglyoxal (MG) detoxification, and creating tolerance for drought-induced oxidative stress is well documented in plants. However, the influences of enzyme activity and osmoregulation on Spm biosynthesis and metabolism are variable. Spm interacts with other molecules like nitric oxide (NO) and phytohormones such as abscisic acid, salicylic acid, brassinosteroids, and ethylene, to coordinate the reactions necessary for developing drought tolerance. This review focuses on the role of Spm in plants under severe drought stress. We have proposed models to explain how Spm interacts with existing defense mechanisms in plants to improve drought tolerance.


Antioxidants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 268 ◽  
Author(s):  
Izhar Hyder Qazi ◽  
Christiana Angel ◽  
Haoxuan Yang ◽  
Evangelos Zoidis ◽  
Bo Pan ◽  
...  

Selenium (Se) is an important trace mineral having many essential roles at the cellular and organismal levels in animal and human health. The biological effects of Se are mainly carried out by selenoproteins (encoded by 25 genes in humans and 24 in mice). As an essential component of selenoproteins, Se performs structural and enzymic roles; in the latter context it is well known for its catalytic and antioxidative functions. Studies involving different animal models have added great value to our understanding regarding the potential implications of Se and selenoproteins in mammalian fertility and reproduction. In this review, we highlight the implications of selenoproteins in male fertility and reproduction followed by the characteristic biological functions of Se and selenoproteins associated with overall male reproductive function. It is evident from observations of past studies (both animal and human) that Se is essentially required for spermatogenesis and male fertility, presumably because of its vital role in modulation of antioxidant defense mechanisms and other essential biological pathways and redox sensitive transcription factors. However, bearing in mind the evidences from mainstream literature, it is also advisable to perform more studies focusing on the elucidation of additional roles played by the peculiar and canonical selenoproteins i.e., glutathione peroxidase 4 (GPX4) and selenoprotein P (SELENOP) in the male reproductive functions. Nevertheless, search for the elucidation of additional putative mechanisms potentially modulated by other biologically relevant selenoproteins should also be included in the scope of future studies. However, as for the implication of Se in fertility and reproduction in men, though a few clinical trials explore the effects of Se supplementation on male fertility, due to inconsistencies in the recruitment of subjects and heterogeneity of designs, the comparison of such studies is still complicated and less clear. Therefore, further research focused on the roles of Se and selenoproteins is awaited for validating the evidences at hand and outlining any therapeutic schemes intended for improving male fertility. As such, new dimensions could be added to the subject of male fertility and Se supplementation.


Author(s):  
Andrea Sanchez-Navarro ◽  
Isaac González-Soria ◽  
Rebecca Caldiño-Bohn ◽  
Norma A. Bobadilla

Serpins are a superfamily of proteins characterized by their common function as serine protease inhibitors. So far, 36 serpins from nine clades have been identified. These proteins are expressed in all the organs and are involved in multiple important functions such as the regulation of blood pressure, hormone transport, insulin sensitivity, and the inflammatory response. Diseases such as obesity, diabetes, cardiovascular, and kidney disorders are intensively studied to find effective therapeutic targets. Given serpins' outstanding functionality, the deficiency or overexpression of certain types of serpin have been associated with diverse pathophysiological events. In particular, we will focus on reviewing the studies evaluating the participation of serpins, and particularly SerpinA3, in diverse diseases that occur in relevant organs such as the brain, retinas, corneas, lungs, cardiac vasculature, and kidneys. In this review, we summarize the role of serpins in physiological and pathophysiological processes, as well as recent evidence on the crucial role of SerpinA3 in several pathologies. Finally, we emphasize the importance of SerpinA3 in regulating cellular processes such as angiogenesis, apoptosis, fibrosis, oxidative stress, and the inflammatory response.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Ken Shinmura

The biology of aging has not been fully clarified, but the free radical theory of aging is one of the strongest aging theories proposed to date. The free radical theory has been expanded to the oxidative stress theory, in which mitochondria play a central role in the development of the aging process because of their critical roles in bioenergetics, oxidant production, and regulation of cell death. A decline in cardiac mitochondrial function associated with the accumulation of oxidative damage might be responsible, at least in part, for the decline in cardiac performance with age. In contrast, lifelong caloric restriction can attenuate functional decline with age, delay the onset of morbidity, and extend lifespan in various species. The effect of caloric restriction appears to be related to a reduction in cellular damage induced by reactive oxygen species. There is increasing evidence that sirtuins play an essential role in the reduction of mitochondrial oxidative stress during caloric restriction. We speculate that cardiac sirtuins attenuate the accumulation of oxidative damage associated with age by modifying specific mitochondrial proteins posttranscriptionally. Therefore, the distinct role of each sirtuin in the heart subjected to caloric restriction should be clarified to translate sirtuin biology into clinical practice.


2008 ◽  
Vol 19 (2) ◽  
pp. 100-112 ◽  
Author(s):  
Natalie Lassen ◽  
William J. Black ◽  
Tia Estey ◽  
Vasilis Vasiliou

2000 ◽  
Vol 47 (2) ◽  
pp. 281-292 ◽  
Author(s):  
B Kłapcińska ◽  
J Derejczyk ◽  
K Wieczorowska-Tobis ◽  
A Sobczak ◽  
E Sadowska-Krepa ◽  
...  

The study was designed to assess the antioxidant defense mechanisms, either enzymatic or non-enzymatic, in a group of sixteen centenarians (one male and fifteen female subjects aged 101 to 105 years) living in the Upper Silesia district (Poland) in order to evaluate the potential role of antioxidant defenses in human longevity. The results of our preliminary study showed that in comparison with young healthy female adults the centenarians had significantly higher red blood cell glutathione reductase and catalase activities and higher, although insignificantly, serum vitamin E level.


2007 ◽  
Vol 23 (5-6-1) ◽  
pp. 181-191
Author(s):  
U. Kravchenko ◽  
G. Borjaev ◽  
M. Nevitov ◽  
A. Ostapchuk ◽  
E. Kistanova

The purpose of the present work was, under conditions of the model experiment on rats, to tap the information about the features of shortterm acclimatization of the antioxidant system in various organs to toxicity of cadmium at stages of an ontogenesis and about the preventive role of the antioxidant selenopyran in this process. The obtained results showed the ontogenetic differences in the adaptive reactivity of the enzymatic antioxidant defense system in the most important organs and tissues of rats under conditions of oxidative stress induced by cadmium. The ontogenetic differences of Se redistribution in a body under influence of cadmium administration were found. The discovered decrease of Se concentration in the liver of young animals and the increase of its concentration in the liver of old animals correlated positively with the changes of GPx activity. Preventive administration of selenopyran (9- phenyl-simmetrical octa-hydroselenoxanthene) to old animals reduced the oxidative stress intensity. Animals of all age groups showed higher selenium concentration in the tissues and the increase in the selenium-dependent GPx activity.


Sign in / Sign up

Export Citation Format

Share Document