scholarly journals PEMBUATAN HARDBOARD DARI SERAT ALTERNATIF MENGGUNAKAN LIGNIN ALAMINYA DAN TANIN FORMALDEHIDA SEBAGAI PEREKAT

2015 ◽  
Vol 5 (01) ◽  
Author(s):  
Dian Anggraini Indrawan ◽  
Han Roliadi ◽  
Rossi Margareth Tampubolon ◽  
Mohamad Iqbal ◽  
Lisna Efiyanti

The most numerous uses of hardboard are for sound-deadening barrier, insulation wall, furniture, part of electronic appliances, and vehicle interior.Nowadays, in Indonesia the availability of natural-forest woods (the conventional ligno-cellulosic fibrous raw material) for fiberboard manufacture becomes limited and scarce. Thus, non-wood alternative fibers should be considered as raw material for fiber board. In this study, experiment was done using alternative fibers which were Saccharum spontaneum grasses (SSG), empty oil-palm bunches (EOPB), and bamboo. The pulping and mat forming employed consecutively an open-hot soda semi-chemical process and wet-forming process. The additives for hardboard forming comprised wax emulsion and tannin formaldehyde (TF) adhesive.Alkali consumption in the pulping of alternative fibers (SSG, EOPB, and bamboo) for hardboard ranged about 88-99% (regarded as quite high, near 100%). SSG was the most prospective for hardboard, followed by consecutively EOPB and bamboo. Also, physical-strength properties of hardboard from SSG satisfied the JIS and ISO requirement the most. The prospective results of fiberboard manufacture from the alternative fiber materials will expectedly lessen the dependency on naturalforest woods thereby sustaining the natural resources, and alleviating environment concerns. The high alkali consumption and wet-forming implementation hinted that this fiberboard-manufacturing experiment is more suitable for small-medium scale endeavor (SME). Keywords: hardboard, alternative ligno-cellulosic fiber materials, prospective results, sustaining natural resources, small-to-medium scale endeavor (SME)ABSTRAKHardboard banyak digunakan antara lain untuk bahan peredam suara, dinding penyekat, mebel, bagian dari peralatan elektronik dan interior kendaraan. Di Indonesia, ketersediaan kayu hutan alam (bahan baku serat berligno-selulosa konvensional) untuk pembuatan papan serat di Indonesia semakin terbatas dan langka. Oleh karena itu bahan serat alternatif harus dipertimbangkan sebagai bahan baku papan serat. Dalam penelitian ini dilakukan percobaan pembuatan papan serat (hardboard) dari bahan serat alternatif, yaitu rumput gelagah (RG), tandan kosong kelapa sawit (TKKS) dan bambu. Pengolahan pulp (pulping) dan pembentukan lembaran untuk papan serat menggunakan proses semi-kimia soda panas terbuka dengan pembentukan cara basah (wet process). Bahan aditif yang digunakan adalah emulsi lilin dan perekat tanin formaldehida (TF) Konsumsi alkali pada pulping adalah 88-99% (dianggap cukup tinggi, mendekati 100%). RG paling berprospek untuk hardboard diikuti oleh TKKS dan bambu, dan sifat fisik-kekuatan hardboard dari RG paling banyak memenuhi persyaratan JIS dan ISO. Hasil prospektif pemanfaatan serat alternatif untuk papan serat diharapkan bermanfaat mengurangi ketergantungan pada kayu hutan alam sehingga ikut melestarikan sumber daya alam. Tingginya konsumsi alkali dan penerapan cara basah berindikasi bahwa pengolahan papan serat ini lebih sesuai untuk usaha kecil menengah (UKM).Kata kunci: hardboard, bahan baku serat alternatif, hasil prospektif, melestarikan sumber daya alam, usaha kecil menengah (UKM)

2020 ◽  
Vol 35 (3) ◽  
pp. 325-331
Author(s):  
Sandeep Kumar Tripathi ◽  
Izhar Alam ◽  
Nishi Kant Bhardwaj

AbstractEffect of different proportions of bark in mixed hardwood (about 70 % eucalyptus and 30 % poplar) chips on pulp and papermaking properties was studied. Increased proportion of bark in raw material chips resulted in increased active alkali consumption, increased reject content in pulp and reduced pulp yield after kraft pulping. The unbleached pulp obtained with higher proportion of bark in mixed hardwood chips also has higher kappa number, lower brightness and viscosity as compared to pulp obtained with bark free mixed hardwood chips. The soda loss and ash content in pulp were severely increased from 12.8 kg/t to 312 kg/t of pulp and 0.7 % to 21.1 %, respectively with the increase of bark portion from 0 to 100 % in raw material furnish. The physical strength properties like tensile, burst and tear indices in the pulp obtained from bark were reduced by 58.5 %, 60.7 % and 68.4 %, respectively as compared to that with bark free mixed hardwood.


2020 ◽  
Vol 2020 (3) ◽  
pp. 24-31
Author(s):  
Z Galimova ◽  
◽  
H Babakhanova ◽  
M Abdunazarov ◽  
I Ismoilov ◽  
...  

Both raw and recycled fiber materials are used for paper production. The increase in percentage use of the latter is due to their paper-forming properties, availability and low cost. The article explores the possibility of using pulp from the inner layer of mulberry twig bark. Mulberry twigs, after removing leaves, which are the main raw material in silk production, have no practical industrial application. Recycling waste - mulberry branches - for the production of pulp is therefore relevant as it is aimed at solving raw material and environmental problems. The purpose of this work is to use local raw materials for paper production, study the impact of processing method of the grinding process on paper forming properties. During grinding the mechanical processes of changes of fibers determine mainly structure of a paper sheet, and colloidal-physical processes - bind and ability of fibers to form strong, homogenous and smooth structure of paper. The structure of the sheet of paper facilitates excessive or "selective" ink absorption into the pores of the paper and thus predetermines the quality of reproduction during the printing process. Methods for determining the physical and mechanical properties of papers were used in this work, and changes in the surface structure of samples cast at various technological modes of the milling process were studied. The results of the study revealed that the addition of cellulose mass from the inner layer of mulberry twig bark helps to obtain a strong paper. The optical properties of the paper, which contains cotton and cellulose from the inner layer of mulberry branch bark, are explained by the whiteness of the added fibers themselves. The strength properties of the paper at a weight grinding degree of 300 CWR are explained by the bond between the split and strongly interwoven fibers of the cellulose fibers. It has been established that the addition of more than 30% cellulose from the inner layer of the mulberry branch bark to the paper pulp mass is undesirable, as this adversely affects the whiteness of the paper


TAPPI Journal ◽  
2015 ◽  
Vol 14 (2) ◽  
pp. 73-81 ◽  
Author(s):  
GISELY SAMISTRARO ◽  
PETER W. HART ◽  
JORGE LUIZ COLODETTE ◽  
RICARDO PAIM

Eucalyptus dunii has been commercially used in southern Brazil because of its relatively good frost tolerance and adequate productivity in the winter months. More recently, interest has grown in cultivating Eucalyptus benthamii Maiden & Cambage, which presents even superior frost tolerance compared to E. dunii and is highly productive as well. The quality of E. benthamii for pulp production is not yet proven. Thus, the chemical, anatomical, and technological aspects of pulp made from E. benthamii were compared with those of E. dunii for unbleached paper production. Samples of E. benthamii chips were obtained and analyzed for their basic density, chemical composition, higher heating value, trace elemental analysis, and chip size distribution. The chips were kraft cooked using conditions that produced a 74 ± 6 kappa number. The pulps were characterized for kappa number, yield, viscosity, and morphologic characteristics (e.g., length, wall thickness, and coarseness). Black liquor was analyzed for total solids, organics, inorganics, sodium sulfide, sodium hydroxide, and sodium carbonate. Brownstocks were beaten at five different energy levels in a Valley beater, and the physical strength properties of 120 g/m² handsheets were measured to develop a beater curve. The results of this study showed differences in delignification between the two woods and lower pulp yield for E. benthamii , which are related to their chemical compositions and basic densities. The E. benthamii studied in this work exhibited higher amounts of lignin and extractives, lower carbohydrate content, and lower basic density. However, cooking a blend of the two woods afforded good results in pulping and in physical pulp properties.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (10) ◽  
pp. 643-651 ◽  
Author(s):  
ROBERT J. OGLESBY ◽  
HUMPHREY J. MOYNIHAN ◽  
RICARDO B. SANTOS ◽  
ASHOK GHOSH ◽  
PETER W. HART

The impact of commercially prepared, fully bleached pulp viscosity variation on handsheet physical properties was evaluated at different levels of pulp refining. Hardwood pulps from the same brownstock species mix, cooking parameters, and kappa numbers were processed through two different commercial bleach plants: one with a D0(EP)D1D2 sequence and the second with an OD0(EOP)D1 sequence. Additionally, a commercial softwood (predominately Scotts pine) brownstock pulp bleached by an OD0(EP)D1D2 sequence was employed in this study. Pulps with viscosities ranging from 14 to 21 mPa∙s were refined in a Valley beater to two freeness levels, and the associated handsheet physical properties were measured in this study. Over the pulp viscosity range of 14 to 21 mPa∙s, no clear correlation was found to exist between pulp viscosity and related paper physical properties. Finally, a series of laboratory prepared bleached pulps were purposely prepared under non-ideal conditions to reduce their final viscosities to lower values. Handsheets made from these pulps were tested in their unbeaten condition for physical strength properties. Significant and rapid strength loss occurred when the measured pulp viscosity dropped below 12 mPa∙s; overall strength properties showed no correlation to viscosity above the critical 12 mPa∙s value.


Refractories ◽  
1991 ◽  
Vol 32 (7-8) ◽  
pp. 362-364
Author(s):  
I. G. Subochev ◽  
N. V. Pitak ◽  
I. V. Eremina

2019 ◽  
Vol 1 (6) ◽  
pp. 235-239
Author(s):  
Sabarinathan K ◽  
Ashwathi R

The growing environmental awareness and Construction waste, is increasing day by day which in turn makes the world in seeking for examining the characteristics of Construction waste and obtaining a solution by using its reliable segments such that it can be used as a raw material and Conservation the natural recourses like Coarse aggregate


2012 ◽  
Vol 36 (6) ◽  
pp. 1163-1172 ◽  
Author(s):  
María Graciela Aguayo ◽  
Regis Teixeira Mendonça ◽  
Paulina Martínez ◽  
Jaime Rodríguez ◽  
Miguel Pereira

Tension (TW) and opposite wood (OW) of Eucalyptus globulus trees were analyzed for its chemical characteristics and Kraft pulp production. Lignin content was 16% lower and contained 32% more syringyl units in TW than in OW. The increase in syringyl units favoured the formation of β-O-4 bonds that was also higher in TW than in OW (84% vs. 64%, respectively). The effect of these wood features was evaluated in the production of Kraft pulps from both types of wood. At kappa number 16, Kraft pulps obtained from TW demanded less active alkali in delignification and presented slightly higher or similar pulp yield than pulps made with OW. Fiber length, coarseness and intrinsic viscosity were also higher in tension than in opposite pulps. When pulps where refined to 30°SR, TW pulps needed 18% more revolutions in the PFI mill to achieve the same beating degree than OW pulps. Strength properties (tensile, tear and burst indexes) were slightly higher or similar in tension as compared with opposite wood pulps. After an OD0(EO)D1 bleaching sequence, both pulps achieved up to 89% ISO brightness. Bleached pulps from TW presented higher viscosity and low amount of hexenuronic acids than pulps from OW. Results showed that TW presented high xylans and low lignin content that caused a decrease in alkali consumption, increase pulp strength properties and similar bleaching performance as compared with pulps from OW.


Holzforschung ◽  
2004 ◽  
Vol 58 (4) ◽  
pp. 408-412 ◽  
Author(s):  
C. Xing ◽  
S.Y. Zhang ◽  
J. Deng

Abstract Knowledge of pH and buffering capacity of raw fiber materials is important for understanding the effects of raw material on the curing rate of urea formaldehyde (UF) resin, used for panel manufacturing, especially with some less-desirable wood materials such as bark, top, and commercial thinnings. The effects of pH and buffering capacity as well as catalyst content on the gel time of UF resin were investigated. The results obtained from this study indicate that bark has a lower pH value as well as higher acid and alkaline buffering capacities than wood of the same species due to their extractives. The pH values of the raw fiber materials studied decrease with increased absolute and relative acid buffering capacity due to the increased absolute acidity mass in the solution. At lower levels of added catalyst, the effect of raw material pH on UF resin gel time is significant, while it is insignificant at higher catalyst contents. This may be due to the acidity of wood, which is the main acid catalyst source of the mixture at lower levels of added catalyst, while at higher levels, catalyst is the main source. With higher catalyst contents, all studied raw materials mixed with UF resin result in a longer gel time than does UF resin alone.


2020 ◽  
pp. 451-457
Author(s):  
Aleksandr Yur'yevich Vititnev ◽  
Yuriy Davydovich Alashkevich ◽  
Natal'ya Geral'dovna Chistova ◽  
Roman Aleksandrovich Marchenko ◽  
Venera Nurullovna Matygullina

This paper presents the results of experimental studies of the physical and mechanical properties of wood-fiber boards of the wet production method when regulating the design and technological parameters of the grinding process. This allowed us to determine the influence of the working clearance between the grinding discs and the concentration of fibre mass with the subject to of quality change wood fiber after defibrator using the developed construction of the disc fibrillation action on the physico-mechanical properties of boards. As a result of the experiment, regression models were obtained that adequately describe the studied grinding process and allow predicting the values of physical and mechanical properties of the finished product depending on the established  parameters process. A comparative analysis of the size and quality characteristics of the fiber semi-finished product and its fractional composition when using a developed construction the disc of refiner fibrillation action and a traditional design used in industry is carried out. The preferential efficiency of the grinding process under the fibrillating effect the disc of refiner in comparison with the traditional construction disc of refiner is established. As a result, there is a significant improvement in the quality indicators of the fiber semi-finished product and its composition due to the formation and predominance in the total mass of long and thin, respectively, flexible fibrillated fibers with high tile-forming properties, which allows to increase the strength properties of the product (by 20–25%), without using binding resins.


2019 ◽  
Vol 51 (3) ◽  
pp. 285-294
Author(s):  
Dang Wei ◽  
H.-Y. He

High strength lightweight glass-ceramics were fabricated with coal gangue and clay as main raw materials. The utilization ratio of coal gangue, the ratio of the coal gangue with clay, mineralization agents, forming process and sintering process on the properties of the fabricated glass-ceramics were optimized. The utilization ratio of coal gangue reached 75, and the ratio of coal gangue to clay was 3/1, as an optimal property was observed. The optimal sintering temperature was found to be 1370?C. At this optimal temperature, the sintered glass-ceramics showed the main phase of mullite and spindle and so showed high strength, low density, and low water absorbance. The appropriate amounts of codoping of the TiO2, ZnO, and MnO2/dolomite as mineralization agents obviously enhanced the properties of the glass-ceramics. Process optimizations further determined reasonable and optimal process parameters. The high strength lightweight glass-ceramics fabricated in this work may be very suitable for various applications including building materials, cooking ceramics, and proppant materials, et al.


Sign in / Sign up

Export Citation Format

Share Document