scholarly journals Comparison between the different Artificial Neural Network (ANN) accuracy in diagnosis of asthma: مقارنة بين اختلاف دقة الشبكات العصبية الاصطناعية في تشخيص مرض الربو

Author(s):  
Hanein Omar Mohamed, Basma.F.Idris Hanein Omar Mohamed, Basma.F.Idris

Asthma is a chronic disease that is caused by inflammation of airways. Diagnosis, predication and classification of asthmatic are one of the major attractive areas of research for decades by using different and recent techniques, however the main problem of asthma is misdiagnosis. This paper simplifies and compare between different Artificial Neural Network techniques used to solve this problem by using different algorithms to getting a high level of accuracyin diagnosis, prediction, and classification of asthma like: (data mining algorithms, machine learning algorithms, deep machine learning algorithms), depending and passing through three stages: data acquisition, feature extracting, data classification. According to the comparison of different techniques the high accuracy achieved by ANN was (98.85%), and the low accuracy of it was (80%), despite of the accuracy achieved by Support Vector Machine (SVM) was (86%) when used Mel Frequency Cepstral Coefficient MFCC for feature extraction, while the accuracy was (99.34%) when used Relief for extracting feature. Based in our comparison we recommend that if the researchers used the same techniques they should to return to previous studies it to get high accuracy.

Author(s):  
James A. Tallman ◽  
Michal Osusky ◽  
Nick Magina ◽  
Evan Sewall

Abstract This paper provides an assessment of three different machine learning techniques for accurately reproducing a distributed temperature prediction of a high-pressure turbine airfoil. A three-dimensional Finite Element Analysis thermal model of a cooled turbine airfoil was solved repeatedly (200 instances) for various operating point settings of the corresponding gas turbine engine. The response surface created by the repeated solutions was fed into three machine learning algorithms and surrogate model representations of the FEA model’s response were generated. The machine learning algorithms investigated were a Gaussian Process, a Boosted Decision Tree, and an Artificial Neural Network. Additionally, a simple Linear Regression surrogate model was created for comparative purposes. The Artificial Neural Network model proved to be the most successful at reproducing the FEA model over the range of operating points. The mean and standard deviation differences between the FEA and the Neural Network models were 15% and 14% of a desired accuracy threshold, respectively. The Digital Thread for Design (DT4D) was used to expedite all model execution and machine learning training. A description of DT4D is also provided.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258788
Author(s):  
Sarra Ayouni ◽  
Fahima Hajjej ◽  
Mohamed Maddeh ◽  
Shaha Al-Otaibi

The educational research is increasingly emphasizing the potential of student engagement and its impact on performance, retention and persistence. This construct has emerged as an important paradigm in the higher education field for many decades. However, evaluating and predicting the student’s engagement level in an online environment remains a challenge. The purpose of this study is to suggest an intelligent predictive system that predicts the student’s engagement level and then provides the students with feedback to enhance their motivation and dedication. Three categories of students are defined depending on their engagement level (Not Engaged, Passively Engaged, and Actively Engaged). We applied three different machine-learning algorithms, namely Decision Tree, Support Vector Machine and Artificial Neural Network, to students’ activities recorded in Learning Management System reports. The results demonstrate that machine learning algorithms could predict the student’s engagement level. In addition, according to the performance metrics of the different algorithms, the Artificial Neural Network has a greater accuracy rate (85%) compared to the Support Vector Machine (80%) and Decision Tree (75%) classification techniques. Based on these results, the intelligent predictive system sends feedback to the students and alerts the instructor once a student’s engagement level decreases. The instructor can identify the students’ difficulties during the course and motivate them through e-mail reminders, course messages, or scheduling an online meeting.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marwah Sattar Hanoon ◽  
Ali Najah Ahmed ◽  
Nur’atiah Zaini ◽  
Arif Razzaq ◽  
Pavitra Kumar ◽  
...  

AbstractAccurately predicting meteorological parameters such as air temperature and humidity plays a crucial role in air quality management. This study proposes different machine learning algorithms: Gradient Boosting Tree (G.B.T.), Random forest (R.F.), Linear regression (LR) and different artificial neural network (ANN) architectures (multi-layered perceptron, radial basis function) for prediction of such as air temperature (T) and relative humidity (Rh). Daily data over 24 years for Kula Terengganu station were obtained from the Malaysia Meteorological Department. Results showed that MLP-NN performs well among the others in predicting daily T and Rh with R of 0.7132 and 0.633, respectively. However, in monthly prediction T also MLP-NN model provided closer standards deviation to actual value and can be used to predict monthly T with R 0.8462. Whereas in prediction monthly Rh, the RBF-NN model's efficiency was higher than other models with R of 0.7113. To validate the performance of the trained both artificial neural network (ANN) architectures MLP-NN and RBF-NN, both were applied to an unseen data set from observation data in the region. The results indicated that on either architecture of ANN, there is good potential to predict daily and monthly T and Rh values with an acceptable range of accuracy.


2021 ◽  
Author(s):  
Bangaru Kamatchi S ◽  
R. Parvathi

Abstract The agriculture yield mostly depends on climate factors. Any information associated with climatic factors will help farmers in foreordained farming. Choosing a right crop at right time is most important to get proper yield. To help the farmers in decision making process a classification model is built by considering the agro climatic parameters of a crop like temperature, relative humidity, type of soil, soil pH and crop duration and a recommendation system is built based on three factors namely crop, type of crop and the districts. Predicting the districts is the novel approach in which crop pattern of 33 districts of Tamilnadu is marked and based on that classification model is built. Thorough analysis of machine learning algorithms incorporating pre-processing, data augmentation and comparison of optimizers and activation function of ANN. Log loss metric is used to validate the models. The results shows that artificial neural network is the best predictive model for classification of crops crop type and district based on agrometeorological climatic condition. The accuracy of artificial neural network model is compared with five different machine learning algorithms to analyse the performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Tuan Vu Dinh ◽  
Hieu Nguyen ◽  
Xuan-Linh Tran ◽  
Nhat-Duc Hoang

Soil erosion induced by rainfall is a critical problem in many regions in the world, particularly in tropical areas where the annual rainfall amount often exceeds 2000 mm. Predicting soil erosion is a challenging task, subjecting to variation of soil characteristics, slope, vegetation cover, land management, and weather condition. Conventional models based on the mechanism of soil erosion processes generally provide good results but are time-consuming due to calibration and validation. The goal of this study is to develop a machine learning model based on support vector machine (SVM) for soil erosion prediction. The SVM serves as the main prediction machinery establishing a nonlinear function that maps considered influencing factors to accurate predictions. In addition, in order to improve the accuracy of the model, the history-based adaptive differential evolution with linear population size reduction and population-wide inertia term (L-SHADE-PWI) is employed to find an optimal set of parameters for SVM. Thus, the proposed method, named L-SHADE-PWI-SVM, is an integration of machine learning and metaheuristic optimization. For the purpose of training and testing the method, a dataset consisting of 236 samples of soil erosion in Northwest Vietnam is collected with 10 influencing factors. The training set includes 90% of the original dataset; the rest of the dataset is reserved for assessing the generalization capability of the model. The experimental results indicate that the newly developed L-SHADE-PWI-SVM method is a competitive soil erosion predictor with superior performance statistics. Most importantly, L-SHADE-PWI-SVM can achieve a high classification accuracy rate of 92%, which is much better than that of backpropagation artificial neural network (87%) and radial basis function artificial neural network (78%).


Author(s):  
Angana Saikia ◽  
Vinayak Majhi ◽  
Masaraf Hussain ◽  
Sudip Paul ◽  
Amitava Datta

Tremor is an involuntary quivering movement or shake. Characteristically occurring at rest, the classic slow, rhythmic tremor of Parkinson's disease (PD) typically starts in one hand, foot, or leg and can eventually affect both sides of the body. The resting tremor of PD can also occur in the jaw, chin, mouth, or tongue. Loss of dopamine leads to the symptoms of Parkinson's disease and may include a tremor. For some people, a tremor might be the first symptom of PD. Various studies have proposed measurable technologies and the analysis of the characteristics of Parkinsonian tremors using different techniques. Various machine-learning algorithms such as a support vector machine (SVM) with three kernels, a discriminant analysis, a random forest, and a kNN algorithm are also used to classify and identify various kinds of tremors. This chapter focuses on an in-depth review on identification and classification of various Parkinsonian tremors using machine learning algorithms.


2018 ◽  
Vol 8 (8) ◽  
pp. 1280 ◽  
Author(s):  
Yong Kim ◽  
Youngdoo Son ◽  
Wonjoon Kim ◽  
Byungki Jin ◽  
Myung Yun

Sitting on a chair in an awkward posture or sitting for a long period of time is a risk factor for musculoskeletal disorders. A postural habit that has been formed cannot be changed easily. It is important to form a proper postural habit from childhood as the lumbar disease during childhood caused by their improper posture is most likely to recur. Thus, there is a need for a monitoring system that classifies children’s sitting postures. The purpose of this paper is to develop a system for classifying sitting postures for children using machine learning algorithms. The convolutional neural network (CNN) algorithm was used in addition to the conventional algorithms: Naïve Bayes classifier (NB), decision tree (DT), neural network (NN), multinomial logistic regression (MLR), and support vector machine (SVM). To collect data for classifying sitting postures, a sensing cushion was developed by mounting a pressure sensor mat (8 × 8) inside children’s chair seat cushion. Ten children participated, and sensor data was collected by taking a static posture for the five prescribed postures. The accuracy of CNN was found to be the highest as compared with those of the other algorithms. It is expected that the comprehensive posture monitoring system would be established through future research on enhancing the classification algorithm and providing an effective feedback system.


Author(s):  
Denis Sato ◽  
Adroaldo José Zanella ◽  
Ernane Xavier Costa

Vehicle-animal collisions represent a serious problem in roadway infrastructure. To avoid these roadway collisions, different mitigation systems have been applied in various regions of the world. In this article, a system for detecting animals on highways is presented using computer vision and machine learning algorithms. The models were trained to classify two groups of animals: capybaras and donkeys. Two variants of the convolutional neural network called Yolo (You only look once) were used, Yolov4 and Yolov4-tiny (a lighter version of the network). The training was carried out using pre-trained models. Detection tests were performed on 147 images. The accuracy results obtained were 84.87% and 79.87% for Yolov4 and Yolov4-tiny, respectively. The proposed system has the potential to improve road safety by reducing or preventing accidents with animals.


Author(s):  
Dr.S.K.Nivetha Et al.

Handwriting recognition is one of the most persuasive and interesting projects as it is required in many real-life applications such as bank-check processing, postal-code recognition, handwritten notes or question paper digitization etc. Machine learning and deep learning methods are being used by developers to make computers more intelligent. A person learns how to execute a task by learning and repeating it over and over before it memorises the steps. The neurons in his brain will then be able to easily execute the task that he has mastered. This is also very close to machine learning. It employs a variety of architectures to solve various problems. Handwritten text recognition systems are models that capture and interpret handwritten numeric and character data from sources such as paper documents and photographs. For this application, a variety of machine learning algorithms were used. However, several limitations have been found, such as a large number of iterations, high training costs, and so on. Even though the other models have given impressive accuracy, it still has some drawbacks. In an unsupervised way, the Artificial Neural Network is used to learn effective data coding. For recognising real-world data, we built a model using Histogram of Oriented Gradients (HOG) and Artificial Neural Networks (ANN).


Author(s):  
D. Wang ◽  
M. Hollaus ◽  
N. Pfeifer

Classification of wood and leaf components of trees is an essential prerequisite for deriving vital tree attributes, such as wood mass, leaf area index (LAI) and woody-to-total area. Laser scanning emerges to be a promising solution for such a request. Intensity based approaches are widely proposed, as different components of a tree can feature discriminatory optical properties at the operating wavelengths of a sensor system. For geometry based methods, machine learning algorithms are often used to separate wood and leaf points, by providing proper training samples. However, it remains unclear how the chosen machine learning classifier and features used would influence classification results. To this purpose, we compare four popular machine learning classifiers, namely Support Vector Machine (SVM), Na¨ıve Bayes (NB), Random Forest (RF), and Gaussian Mixture Model (GMM), for separating wood and leaf points from terrestrial laser scanning (TLS) data. Two trees, an <i>Erytrophleum fordii</i> and a <i>Betula pendula</i> (silver birch) are used to test the impacts from classifier, feature set, and training samples. Our results showed that RF is the best model in terms of accuracy, and local density related features are important. Experimental results confirmed the feasibility of machine learning algorithms for the reliable classification of wood and leaf points. It is also noted that our studies are based on isolated trees. Further tests should be performed on more tree species and data from more complex environments.


Sign in / Sign up

Export Citation Format

Share Document