Chemical targeting of voltage sensitive dyes to specific cells and molecules in the brain

2020 ◽  
Author(s):  
Tomas Fiala ◽  
Jihang Wang ◽  
Matthew Dunn ◽  
Peter Šebej ◽  
Se Joon Choi ◽  
...  

Voltage sensitive fluorescent dyes (VSDs) are important tools for probing signal transduction in neurons and other excitable cells. These sensors, rendered highly lipophilic to anchor the conjugated pi-wire molecular framework in the membrane, offer several favorable functional parameters including fast response kinetics and high sensitivity to membrane potential changes. The impact of VSDs has, however, been limited due to the lack of cell-specific targeting methods in brain tissue or living animals. We address this key challenge by introducing a non-genetic molecular platform for cell- and molecule-specific targeting of synthetic voltage sensitive dyes in the brain. We employ a dextran polymer particle to overcome the inherent lipophilicity of voltage sensitive dyes by dynamic encapsulation, and high-affinity ligands to target the construct to specific neuronal cells utilizing only native components of the neurotransmission machinery at physiological expression levels. Dichloropane, a monoamine transporter ligand, enables targeting of dense dopaminergic axons in the mouse striatum and sparse noradrenergic axons in the mouse cortex in acute brain slices. PFQX in conjunction with ligand-directed acyl imidazole chemistry enables covalent labeling of AMPA-type glutamate receptors in the same brain regions. Probe variants bearing either a classical electrochromic ANEP dye or state-of-the-art VoltageFluor-type dye respond to membrane potential changes in a similar manner to the parent dyes, as shown by whole-cell patch recording. We demonstrate the feasibility of optical voltage recording with our probes in brain tissue with one-photon and two-photon fluorescence microscopy and define the signal limits of optical voltage imaging with synthetic sensors under a low photon budget determined by the native expression levels of the target proteins. We envision that modularity of our platform will enable its application to a variety of molecular targets and sensors, as well as lipophilic drugs and signaling modulators. This work demonstrates the feasibility of a chemical targeting approach and expands the possibilities of cell-specific imaging and pharmacology.

2020 ◽  
Author(s):  
Tomas Fiala ◽  
Jihang Wang ◽  
Matthew Dunn ◽  
Peter Šebej ◽  
Se Joon Choi ◽  
...  

Voltage sensitive fluorescent dyes (VSDs) are important tools for probing signal transduction in neurons and other excitable cells. These sensors, rendered highly lipophilic to anchor the conjugated pi-wire molecular framework in the membrane, offer several favorable functional parameters including fast response kinetics and high sensitivity to membrane potential changes. The impact of VSDs has, however, been limited due to the lack of cell-specific targeting methods in brain tissue or living animals. We address this key challenge by introducing a non-genetic molecular platform for cell- and molecule-specific targeting of synthetic voltage sensitive dyes in the brain. We employ a dextran polymer particle to overcome the inherent lipophilicity of voltage sensitive dyes by dynamic encapsulation, and high-affinity ligands to target the construct to specific neuronal cells utilizing only native components of the neurotransmission machinery at physiological expression levels. Dichloropane, a monoamine transporter ligand, enables targeting of dense dopaminergic axons in the mouse striatum and sparse noradrenergic axons in the mouse cortex in acute brain slices. PFQX in conjunction with ligand-directed acyl imidazole chemistry enables covalent labeling of AMPA-type glutamate receptors in the same brain regions. Probe variants bearing either a classical electrochromic ANEP dye or state-of-the-art VoltageFluor-type dye respond to membrane potential changes in a similar manner to the parent dyes, as shown by whole-cell patch recording. We demonstrate the feasibility of optical voltage recording with our probes in brain tissue with one-photon and two-photon fluorescence microscopy and define the signal limits of optical voltage imaging with synthetic sensors under a low photon budget determined by the native expression levels of the target proteins. We envision that modularity of our platform will enable its application to a variety of molecular targets and sensors, as well as lipophilic drugs and signaling modulators. This work demonstrates the feasibility of a chemical targeting approach and expands the possibilities of cell-specific imaging and pharmacology.


2018 ◽  
Author(s):  
Tomas Fiala ◽  
Jihang Wang ◽  
Matthew Dunn ◽  
Peter Šebej ◽  
Ekeoma Nwadibia ◽  
...  

Voltage sensitive fluorescent dyes (VSDs) are important tools for probing signal transduction in neurons and other excitable cells. These sensors, rendered highly lipophilic to anchor the conjugated p-wire molecular framework in the membrane, offer several favorable functional parameters including fast response kinetics and high sensitivity to membrane potential changes. The impact of VSDs has however been limited due to the lack of cell-specific targeting methods in brain tissue or living animals. We address this key challenge by introducing a non-genetic molecular platform for cell and molecule specific targeting of synthetic voltage sensitive dyes in the brain. We employ a dextran polymer particle to overcome the inherent lipophilicity of voltage sensitive dyes by dynamic encapsulation and target the construct to specific axonal extensions using the monoamine transporter ligand dichloropane. VoLDeMo (<u>Vo</u>ltage Sensor-<u>L</u>igand-<u>De</u>xtran Targeted to <u>Mo</u>noaminergic Neurons) probes label dense dopaminergic axons in the mouse striatum and sparse noradrenergic axons in the mouse cortex in acute brain slices. We also demonstrate in whole adult <i>Drosophila</i> brains that VoLDeMo targeting is ligand dependent. VoLDeMo variants bearing either a classical electrochromic ANEP dye or state-of-the-art VoltageFluor dye respond to membrane potential changes in a similar manner to the parent dyes, as demonstrated by whole-cell patch recording. The VoLDeMo platform enables targeting of diffusible VSD probes to specific neuronal cells using endogenous expression levels of native components of neurotransmission machinery. We envision that modularity of our platform will enable its application to a variety of molecular targets (other receptors and covalent labeling-based tags) and sensors (including those in other imaging modalities), as well as lipophilic drugs and signaling modulators. This work demonstrates the feasibility of a chemical targeting approach and expands the possibilities of cell-specific imaging and pharmacology.


1999 ◽  
Vol 82 (3) ◽  
pp. 1615-1621 ◽  
Author(s):  
Srdjan Antic ◽  
Guy Major ◽  
Dejan Zecevic

Understanding the biophysical properties of single neurons and how they process information is fundamental to understanding how the brain works. A technique that would allow recording of temporal and spatial dynamics of electrical activity in neuronal processes with adequate resolution would facilitate further research. Here, we report on the application of optical recording of membrane potential transients at many sites on neuronal processes of vertebrate neurons in brain slices using intracellular voltage-sensitive dyes. We obtained evidence that 1) loading the neurons with voltage-sensitive dye using patch electrodes is possible without contamination of the extracellular environment; 2) brain slices do not show any autofluorescence at the excitation/emission wavelengths used; 3) pharmacological effects of the dye were completely reversible; 4) the level of photodynamic damage already allows meaningful measurements and could be reduced further; 5) the sensitivity of the dye was comparable to that reported for invertebrate neurons; 6) the dye spread ∼500 μm into distal processes within 2 h incubation period. This distance should increase with longer incubation; 7) the optically recorded action potential signals from basolateral dendrites (that are difficult or impossible to approach by patch electrodes) and apical dendrites show that both direct soma stimulation and synaptic stimulation triggered action potentials that originated near the soma. The spikes backpropagated into both basolateral dendrites and apical processes; the propagation was somewhat faster in the apical dendrites.


2020 ◽  
Author(s):  
Nelda Antonovaite ◽  
Lianne A. Hulshof ◽  
Christiaan F.M. Huffels ◽  
Elly M. Hol ◽  
Wytse J. Wadman ◽  
...  

AbstractThere is increasing evidence of altered tissue mechanics in neurodegeneration. However, due to difficulties in mechanical testing procedures and the complexity of the brain, there is still little consensus on the role of mechanics in the onset and progression of neurodegenerative diseases. In the case of Alzheimer’s disease (AD), magnetic resonance elastography (MRE) studies have indicated viscoelastic differences in the brain tissue of AD and healthy patients. However, there is a lack of viscoelastic data from contact mechanical testing at higher spatial resolution. Therefore, we report viscoelastic maps of the hippocampus obtained by a dynamic indentation on brain slices from the APP/PS1 mouse model where individual brain regions are resolved. A comparison of viscoelastic parameters shows that regions in the hippocampus of the APP/PS1 mice are significantly stiffer than wild-type (WT) mice and have increased viscous dissipation. Furthermore, indentation mapping at the cellular scale directly on the plaques and their surroundings did not show local alterations in stiffness although overall mechanical heterogeneity of the tissue was high (SD~40%). Therefore, reported mechanical alterations at a tissue scale indicates global remodeling of the brain tissue structure.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Nicole M. Wanner ◽  
Mathia Colwell ◽  
Chelsea Drown ◽  
Christopher Faulk

Abstract Background Use of cannabidiol (CBD), the primary non-psychoactive compound found in cannabis, has recently risen dramatically, while relatively little is known about the underlying molecular mechanisms of its effects. Previous work indicates that direct CBD exposure strongly impacts the brain, with anxiolytic, antidepressant, antipsychotic, and other effects being observed in animal and human studies. The epigenome, particularly DNA methylation, is responsive to environmental input and can direct persistent patterns of gene regulation impacting phenotype. Epigenetic perturbation is particularly impactful during embryogenesis, when exogenous exposures can disrupt critical resetting of epigenetic marks and impart phenotypic effects lasting into adulthood. The impact of prenatal CBD exposure has not been evaluated; however, studies using the psychomimetic cannabinoid Δ9-tetrahydrocannabinol (THC) have identified detrimental effects on psychological outcomes in developmentally exposed adult offspring. We hypothesized that developmental CBD exposure would have similar negative effects on behavior mediated in part by the epigenome. Nulliparous female wild-type Agouti viable yellow (Avy) mice were exposed to 20 mg/kg CBD or vehicle daily from two weeks prior to mating through gestation and lactation. Coat color shifts, a readout of DNA methylation at the Agouti locus in this strain, were measured in F1 Avy/a offspring. Young adult F1 a/a offspring were then subjected to tests of working spatial memory and anxiety/compulsive behavior. Reduced-representation bisulfite sequencing was performed on both F0 and F1 cerebral cortex and F1 hippocampus to identify genome-wide changes in DNA methylation for direct and developmental exposure, respectively. Results F1 offspring exposed to CBD during development exhibited increased anxiety and improved memory behavior in a sex-specific manner. Further, while no significant coat color shift was observed in Avy/a offspring, thousands of differentially methylated loci (DMLs) were identified in both brain regions with functional enrichment for neurogenesis, substance use phenotypes, and other psychologically relevant terms. Conclusions These findings demonstrate for the first time that despite positive effects of direct exposure, developmental CBD is associated with mixed behavioral outcomes and perturbation of the brain epigenome.


2019 ◽  
Vol 21 (Supplement_4) ◽  
pp. iv16-iv16
Author(s):  
Alastair Kirby ◽  
Jose Pedro Lavrador ◽  
Christian Brogna ◽  
Francesco Vergani ◽  
Bassel Zebian ◽  
...  

Abstract Gliomas often present clinically with seizures. Tumour-associated seizures can be difficult to control with medication. A deeper understanding of the cellular mechanisms underlying tumour-associated seizures would provide a basis for developing new treatments. Here, we investigate epileptic discharges in peritumoral cortex using living human brain tissue donated by people having a craniotomy for glioma resection (REC approval, 18/SW/002). The brain tissue was cut into thin slices, which preserved the architecture of the glioma and the adjacent healthy brain. The brain slices were incubated in 5-aminolevulinic acid to make the glioma cells fluorescent. This enabled us to make electrophysiological recordings of brain activity across the boundary between glioma and brain. We recorded from brain slices of 5 participants with glioblastoma and 4 participants with oligodendroglioma (WHO grade II – III). Spontaneous “seizure-like” discharges were recorded in brain slices from 5/8 participants (3 GBM, 2 oligodendroglioma) who reported seizures and from one participant (GBM) who had not had any clinical seizures. Further analysis of the seizure-like discharges revealed that they could be subdivided into two distinct types based on the major frequencies in the discharge. We concluded that human brain slices from people with either a low-grade or a high-grade glioma can generate spontaneous seizure-like discharges. The living human brain tissue preparation gives us a platform to study the mechanisms of tumour-associated seizures and how abnormal neural activity affects glioma growth.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Zhaoxia Liang ◽  
Luyang Han ◽  
Dianjianyi Sun ◽  
Yanmin Chen ◽  
Qi Wu ◽  
...  

Abstract Background Chemerin is highly expressed in the serum, placenta tissue, and umbilical cord blood of diabetic mother; however, the impact of chemerin on cognitive disorders of offspring from mothers with diabetes in pregnancy remains unclear. Methods A diabetic phenotype in pregnant mice dams was induced by streptozocin (STZ) injection or intraperitoneal injection of chemerin. Behavioral changes in offspring of diabetic dams and nondiabetic controls were assessed, and changes in chemerin, two receptors of chemerin [chemerin receptor 23 (ChemR23) and chemokine (C-C motif) receptor-like 2 (CCRL2)], macrophages, and neurons in the brain tissue were studied to reveal the underlying mechanism of the behavioral changes. Results Chemerin treatment mimicked the STZ-induced symptom of maternal diabetes in mice along with the altered behavior of offspring in the open field test (OFT) assay. In the exploring process for potential mechanism, the brain tissues of offspring from chemerin-treated dams were observed with an increase level of macrophage infiltration and a decrease number of neuron cells. Moreover, an increased level of NOD-like receptor family pyrin domain containing 3 (NLRP3) and apoptosis-associated speck-like (Asc) protein as well as pyroptosis [characterized by increased active caspase-1 content and secretion of cytokines such as interleukin (IL) 1 beta (IL-1β) and IL-18] more activated in macrophages is also observed in the brain of these diabetic dam’s offspring, in the presence of ChemR23. In vitro, it was found that pyroptosis activation was increased in macrophages separated from the abdominal cavity of normal mice, after chemerin treatment. However, depletion of CCRL2 decreased the level of chemerin in the brain tissues of diabetic dams’ offspring; depletion of ChemR23 decreased macrophage pyroptosis, and depletion of either receptor reversed chemerin-mediated neurodevelopmental deficits and cognitive impairment of offspring of diabetic pregnant dams. Conclusions Chemerin induced diabetic pregnant disease and CCRL2 were required to enrich chemerin in the brain of offspring. Aggregation of chemerin could lead to macrophage recruitment, activation of pyroptosis, the release of inflammatory cytokines, a decrease in the number of neurons, and cognitive impairment in offspring in a ChemR23-dependent manner. Targeting CCRL2 and/or ChemR23 could be useful for treating neuropsychological deficits in offspring of dams with diabetes in pregnancy.


2005 ◽  
Vol 18 (4) ◽  
pp. 1-7 ◽  
Author(s):  
John R. Vender ◽  
Jason Miller ◽  
Andy Rekito ◽  
Dennis E. McDonnell

Hemostatic options available to the surgeon in the late 19th and early 20th centuries were limited. The surgical ligature was limited in value to the neurological surgeon because of the unique structural composition of brain tissue as well as the approaches and operating angles used in this type of surgery. In this manuscript the authors review the options available and the evolution of surgical hemostatic techniques and electrosurgery in the late 19th and early 20th centuries and the impact of these methods on the surgical management of tumors of the brain and its coverings.


2017 ◽  
Vol 12 (01) ◽  
pp. 31 ◽  
Author(s):  
Jürg Kesselring ◽  

In recent years, enormous strides have been made in increasing the range and efficacy of disease-modifying drugs available for the treatment of multiple sclerosis (MS) in its early and remitting stages, and more continue to emerge. Another equally important concept of successful treatment of MS is neurorehabilitation, which must be pursued alongside these medications. Key factors that contribute to the impact of neurorehabilitation include resilience and neuroplasticity. In the former, components such as nutrition, self-belief and physical activity provide a stronger response to the disease and improved responses to treatment. Neuroplasticity is the capacity of the brain to establish new neuronal networks after lesion damage has occurred and distant brain regions assume control of lost functions. In MS, it is vital that each patient is treated by a coordinated multidisciplinary team. This enables all aspects of the disease including problems with mobility, gait, bladder/bowel disturbances, fatigue and depression to be effectively treated. It is also important that the treating team adopts current best practice and provides internationally agreed standards of care. A further vital aspect of MS management is patient engagement, in which individuals are fully involved and are encouraged to strive and put effort into meeting treatment goals. In this approach, healthcare providers become motivators and patients need less intervention and consume fewer resources. Numerous interventions that promote neurorehabilitation are available, though evidence to support their use is limited by a lack of data from large randomised controlled trials. Combining interventions that promote neurorehabilitation with newer, more effective treatments creates a promising potential to substantially improve the outlook for patients at all stages of MS.


2021 ◽  
Vol 10 (21) ◽  
pp. 4987
Author(s):  
Ronja Thieleking ◽  
Rui Zhang ◽  
Maria Paerisch ◽  
Kerstin Wirkner ◽  
Alfred Anwander ◽  
...  

In clinical diagnostics and longitudinal studies, the reproducibility of MRI assessments is of high importance in order to detect pathological changes, but developments in MRI hard- and software often outrun extended periods of data acquisition and analysis. This could potentially introduce artefactual changes or mask pathological alterations. However, if and how changes of MRI hardware, scanning protocols or preprocessing software affect complex neuroimaging outcomes from, e.g., diffusion weighted imaging (DWI) remains largely understudied. We therefore compared DWI outcomes and artefact severity of 121 healthy participants (age range 19–54 years) who underwent two matched DWI protocols (Siemens product and Center for Magnetic Resonance Research sequence) at two sites (Siemens 3T Magnetom Verio and Skyrafit). After different preprocessing steps, fractional anisotropy (FA) and mean diffusivity (MD) maps, obtained by tensor fitting, were processed with tract-based spatial statistics (TBSS). Inter-scanner and inter-sequence variability of skeletonised FA values reached up to 5% and differed largely in magnitude and direction across the brain. Skeletonised MD values differed up to 14% between scanners. We here demonstrate that DTI outcome measures strongly depend on imaging site and software, and that these biases vary between brain regions. These regionally inhomogeneous biases may exceed and considerably confound physiological effects such as ageing, highlighting the need to harmonise data acquisition and analysis. Future studies thus need to implement novel strategies to augment neuroimaging data reliability and replicability.


Sign in / Sign up

Export Citation Format

Share Document