scholarly journals Purification engineering of mono-diacylglycerol using creaming demulsification technique in 20 kg-scale

Food Research ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 1011-1017
Author(s):  
M. Mursalin ◽  
S. Sahrial ◽  
Y. Yernisa

Glycerolysis is the easiest, cheapest, and most widely used method for producing monodiacylglycerol (MDAG). The crude MDAG resulting from chemical glycerolysis still contains a glycerol residue of more than 7.5% so it needs to be purified. Purification with a simple method using a creaming demulsification technique (CDT) on a laboratory scale has been proven to produce MDAG with a glycerol content of less than 1%. This study was aimed to apply CDT on a scale of 20 kg and determine the process conditions that need to be adjusted so that the results are not different from the laboratory scale. Through trial and error method, the process condition adjustment was done iteratively to produce MDAG glycerol content after purification of less than 1.5%. The initial content of crude MDAG was 12.48%, application of CDT on a scale of 20 kg produces pure MDAG with a glycerol residue content of 3.07% (without adjusting the process conditions) and was 1.15% (with adjusting the process conditions). The adjustments meant include: increasing the operating temperature from 65 to 70°C, changing the type of stirrer from a propeller into a 2-level impeller, applying the nozzle for electrolyte mixing, providing longer skim and cream separation opportunities (applying repeated settling), using 1.5 times more hot water for washing, the washing technique was set twice, the first washing using nozzle without stirring and the second using nozzle with stirring. The adjustments were able to increase the purity of the MDAG produced and has met the European Union and FAO/ WHO standards.

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 403
Author(s):  
Matea Bačić ◽  
Anabela Ljubić ◽  
Martin Gojun ◽  
Anita Šalić ◽  
Ana Jurinjak Tušek ◽  
...  

In this research, optimization of the integrated biodiesel production process composed of transesterification of edible sunflower oil, catalyzed by commercial lipase, with simultaneous extraction of glycerol from the reaction mixture was performed. Deep eutectic solvents (DESs) were used in this integrated process as the reaction and extraction media. For two systems, choline chloride:glycerol (ChCl:Gly) and choline chloride:ethylene glycol (ChCl:EG), respectively, the optimal water content, mass ratio of the phase containing the mixture of reactants (oil and methanol) with an enzyme and a DES phase (mass ratio of phases), and the molar ratio of deep eutectic solvent constituents were determined using response surface methodology (RSM). Experiments performed with ChCl:Gly resulted in a higher biodiesel yield and higher glycerol extraction efficiency, namely, a mass ratio of phases of 1:1, a mass fraction of water of 6.6%, and a molar ratio of the ChCl:Gly of 1:3.5 were determined to be the optimal process conditions. When the reaction was performed in a batch reactor under the optimal conditions, the process resulted in a 43.54 ± 0.2% yield and 99.54 ± 0.19% glycerol extraction efficiency (t = 2 h). Unfortunately, the free glycerol content was higher than the one defined by international standards (wG > 0.02%); therefore, the process was performed in a microsystem to enhance the mass transfer. Gaining the same yield and free glycerol content below the standards (wG = 0.0019 ± 0.003%), the microsystem proved to be a good direction for future process optimization.


2021 ◽  
Vol 9 (7) ◽  
pp. 1457
Author(s):  
Julia Hassa ◽  
Johanna Klang ◽  
Dirk Benndorf ◽  
Marcel Pohl ◽  
Benedikt Hülsemann ◽  
...  

There are almost 9500 biogas plants in Germany, which are predominantly operated with energy crops and residues from livestock husbandry over the last two decades. In the future, biogas plants must be enabled to use a much broader range of input materials in a flexible and demand-oriented manner. Hence, the microbial communities will be exposed to frequently varying process conditions, while an overall stable process must be ensured. To accompany this transition, there is the need to better understand how biogas microbiomes respond to management measures and how these responses affect the process efficiency. Therefore, 67 microbiomes originating from 49 agricultural, full-scale biogas plants were taxonomically investigated by 16S rRNA gene amplicon sequencing. These microbiomes were separated into three distinct clusters and one group of outliers, which are characterized by a specific distribution of 253 indicative taxa and their relative abundances. These indicative taxa seem to be adapted to specific process conditions which result from a different biogas plant operation. Based on these results, it seems to be possible to deduce/assess the general process condition of a biogas digester based solely on the microbiome structure, in particular on the distribution of specific indicative taxa, and without knowing the corresponding operational and chemical process parameters. Perspectively, this could allow the development of detection systems and advanced process models considering the microbial diversity.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jan-Erik Berg ◽  
Börje Hellstadius ◽  
Mikael Lundfors ◽  
Per Engstrand

AbstractChemithermomechanical pulp (CTMP) is often used in central layers of multiply paperboards due to its high bulk and strength. Such a CTMP should consist of well-separated undamaged fibres with sufficient bonding capacity. The basic objective of this work is to optimize process conditions in low-consistency (LC) refining, i. e. to select or ultimately develop new optimal LC refiner filling patterns, in order to produce fibrillar fines and improve the separation of fibres from each other while preserving the natural fibre morphology as much as possible. Furthermore, the aim is to evaluate if this type of work can be done at laboratory-scale or if it is necessary to run trials in pilot- or mill-scale in order to get relevant answers. First stage CTMP made from Norway spruce (Picea abies) was LC refined in mill-, pilot- and laboratory-scale trials and with different filling patterns. The results show that an LR1 laboratory refiner can favourably be used instead of larger refiners in order to characterize CTMP with regard to tensile index and z-strength versus bulk. A fine filling pattern resulted in CTMP with higher tensile index, z-strength and energy efficiency at maintained bulk compared to a standard filling pattern.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1576
Author(s):  
Piotr Jadwiszczak ◽  
Jakub Jurasz ◽  
Bartosz Kaźmierczak ◽  
Elżbieta Niemierka ◽  
Wandong Zheng

Heating and cooling sectors contribute to approximately 50% of energy consumption in the European Union. Considering the fact that heating is mostly based on fossil fuels, it is then evident that its decarbonization is one of the crucial tasks for achieving climate change prevention goals. At the same time, electricity sectors across the globe are undergoing a rapid transformation in order to accommodate the growing capacities of non-dispatchable solar and wind generators. One of the proposed solutions to achieve heating sector decarbonization and non-dispatchable generators power system integration is sector coupling, where heat pumps are perceived as a perfect fit. Air source heat pumps enable a rapid improvement in local air quality by replacing conventional heating sources, but at the same time, they put additional stress on the power system. The emissions associated with heat pump operation are a combination of power system energy mix, weather conditions and heat pump technology. Taking the above into consideration, this paper presents an approach to estimate which of the mentioned factors has the highest impact on heat pump emissions. Due to low air quality during the heating season, undergoing a power system transformation (with a relatively low share of renewables) in a case study located in Poland is considered. The results of the conducted analysis revealed that for a scenario where an air-to-water (A/W) heat pump is supposed to cover space and domestic hot water load, its CO2 emissions are shaped by country-specific energy mix (55.2%), heat pump technology (coefficient of performance) (33.9%) and, to a lesser extent, by changing climate (10.9%). The outcome of this paper can be used by policy makers in designing decarbonization strategies and funding distribution.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 419
Author(s):  
Siaka Dembélé ◽  
Robert B. Zougmoré ◽  
Adama Coulibaly ◽  
John P. A. Lamers ◽  
Jonathan P. Tetteh

Agriculture in Mali, a country in Sahelian West Africa, strongly depends on rainfall and concurrently has a low adaptive capacity, making it consequently one of the most vulnerable regions to climate change worldwide. Since early-season drought limits crop germination, and hence growth, ultimately yield during rain-fed depending on production is commonly experienced nowadays in Mali. Germination and establishment of key crops such as the staple sorghum could be improved by seed priming. The effects of hydro-priming with different water sources (e.g., distilled, tap, rain, river, well water) were evaluated respectively for three priming time durations in tepid e.g., at 25 °C (4, 8, and 12 h) and by hot water at 70 °C (in contrast to 10, 20, and 30 min.) in 2014 and 2015. Seed germination and seedling development of nine sorghum genotypes were monitored. Compared to non-primed seed treatments, hydro-priming significantly [p = 0.01] improved final germination percentage, germination rate index, total seedling length, root length, root vigor index, shoot length, and seedling dry weight. The priming with water from wells and rivers resulted in significant higher seed germination (85%) and seedling development, compared to the three other sources of water. Seed germination rate, uniformity, and speed were enhanced by hydro-priming also. It is argued that hydro-priming is a safe and simple method that effectively improve seed germination and seedling development of sorghum. If used in crop fields, the above most promising genotypes may contribute to managing early season drought and avoid failure of seed germination and crop failure in high climate variability contexts.


Author(s):  
Maurizio De Lucia ◽  
Carlo Lanfranchi ◽  
Antonio Matucci

A cogeneration plant with a small gas turbine was installed in a pharmaceutical factory and instrumented for acquiring all the values necessary to appraise both its energetic and cost advantages. The plant was designed and built as a demonstrative project under a program for energy use improvement in industry, partially financed by the European Union. The system comprises as its main components: 1) a gas turbine cogeneration plant for production of power and thermal energy under the form of hot water, superheated water, and steam; 2) a two-stage absorption unit, fueled by the steam produced in the cogeneration plant, for production of cooling thermal energy. The plant was provided with an automatized control system for the acquisition of plant operating parameters. The large amount of data thus provided made it possible to compare the new plant, under actual operating conditions, with the previously existing cooling power station with compression units, and with a traditional power plant. This comparative analysis was based on measurements of the plant operating parameters over nine months, and made it possible to compare actual plant performance with that expected and ISO values. The analysis results reveal that gas turbine performance is greatly affected by part-load as well as ambient temperature conditions. Two-stage absorber performance, moreover, turned out to decrease sharply and more than expected in off-design operating conditions.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6700
Author(s):  
Jolanta Gawałek

Experiments detailing the spray drying of fruit and vegetable juices are necessary at the experimental scale in order to determine the optimum drying conditions and to select the most appropriate carriers and solution formulations for drying on the industrial scale. In this study, the spray-drying process of beetroot juice concentrate on a maltodextrin carrier was analyzed at different dryer scales: mini-laboratory (ML), semi-technical (ST), small industrial (SI), and large industrial (LI). Selected physicochemical properties of the beetroot powders that were obtained (size and microstructure of the powder particles, loose and tapped bulk density, powder flowability, moisture, water activity, violet betalain, and polyphenol content) and their drying efficiencies were determined. Spray drying with the same process parameters but at a larger scale makes it possible to obtain beetroot powders with a larger particle size, better flowability, a color that is more shifted towards red and blue, and a higher retention of violet betalain pigments and polyphenols. As the size of the spray dryer increases, the efficiency of the process expressed in powder yield also increases. To obtain a drying efficiency >90% on an industrial scale, process conditions should be selected to obtain an efficiency of a min. of 50% at the laboratory scale or 80% at the semi-technical scale. Designing the industrial process for spray dryers with a centrifugal atomization system is definitely more effective at the semi-technical scale with the same atomization system than it is at laboratory scale with a two-fluid nozzle.


Author(s):  
AW Hassan ◽  
MY Noordin ◽  
S Izman ◽  
K Denni

Heat treatment processes have a positive impact in improving the adhesion strength of different interlayer/substrate materials. However, information regarding the effect of these processes in enhancing the adhesion strength of an electroplated nickel interlayer on tungsten carbide substrate for diamond deposition is lacking. In this study, the effect of carburizing and annealing process conditions in enhancing the adhesion strength of the electroplated nickel interlayer was investigated. The heat treatment processes were designed and modeled by the design of experiments technique. The heat-treated specimens were characterized by the field-emission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction techniques. The adhesion of the interlayer before and after the heat treatment was assessed by the scratch test. The results show that the adhesion of the electroplated nickel interlayer was remarkably improved by both processes. The mathematical models for predicting the adhesion strength of the carburized and annealed nickel interlayer within the specified ranges were developed. The maximum adhesion strength of 30 N was obtained from the nickel interlayer annealed at the highest process condition of temperature and time.


2016 ◽  
Vol 861 ◽  
pp. 198-205
Author(s):  
Anton Pitonak ◽  
Martin Lopusniak

In the members states of the European Union, portion of buildings in the total consumption of energy represents 40%, and their portion in CO2 emissions fluctuates around 35%. The European Union is trying to protect the environment by reducing energy demand and releasing CO2 emissions into the air. Energy performance is the quantity of energy, which is necessary for heating and domestic hot water production, for cooling and ventilation and for lighting. Based on results of energy performance, individual buildings are classified into energy classes A to G. A global indicator (primary energy) is the decisive factor for final evaluation of the building. The new building must meet minimum requirements for energy performance, i.e. it must be classified to energy class A1 since 2016, and to energy class A0 since 2020. The paper analyses effect of the use of different resources of heat in a family house designed according to requirements valid since 2020, and its subsequent classification into an energy class.


Author(s):  
Md Shahjahan Hossain ◽  
Hossein Taheri ◽  
Niraj Pudasaini ◽  
Alexander Reichenbach ◽  
Bishal Silwal

Abstract The applications for metal additive manufacturing (AM) are expanding. Powder-bed, powder-fed, and wire-fed AM are the different kinds of AM technologies based on the feeding material. Wire-Arc AM (WAAM) is a wire-fed technique that has the potential to fabricate large-scale three-dimensional objects. In WAAM, a metallic wire is continuously fed to the deposition location and is melted by an arc-welding power source. As the applications for WAAM expands, the quality assurance of the parts becomes a major concern. Nondestructive testing (NDT) of AM parts is necessary for quality assurance and inspection of these materials. The conventional method of inspection is to perform testing on the finished parts. There are several limitations encountered when using conventional methods of NDT for as-built AM parts due to surface conditions and complex structure. In-situ process monitoring based on the ultrasound technology is proposed for WAAM material inspection during the manufacturing process. Ultrasonic inline monitoring techniques have the advantages of providing valuable information about the process and parts quality. Ultrasonic technique was used to detect the process condition deviations from the normal. A fixture developed by the authors holds an ultrasonic sensor under the build platform and aligned with the center of the base plate. Ultrasonic signals were measured for different process conditions by varying the current and gas flow rate. Features (indicators) from the radio frequency (RF) signal were used to evaluate the difference in signal clusters to identify and classify different build conditions. Results show that the indicator values of the ultrasonic signals in the region of interest (ROI) changes with different process conditions and can be used to classify them.


Sign in / Sign up

Export Citation Format

Share Document