scholarly journals Knowledge Economy: Model Construction and Development Trend of Online Education

2022 ◽  
Vol 6 (1) ◽  
pp. 40-46
Author(s):  
Junjie Liu ◽  
Maxim Chernyaev

In regard to knowledge economy, the current concept in the model construction of online education, including distance education and online learning, generally refers to a kind of network-based learning behavior, similar to the concept of online training. Compared with traditional offline education methods, through the application of information technology and internet technology for content dissemination and rapid learning, online education has the characteristics of high efficiency, convenience, low threshold, and rich teaching resources. Online education covers a wide range of people, different forms of learning, and its classification methods are more diverse. Online education services are the fastest growing field of education informatization. At the moment, the most pressing problems include effectively integrating educational resources with internet technology, launching online education services and products that are highly interactive and would encourage personalized learning, increasing user stickiness, as well as avoiding trend-following and conceptualized investment.

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yanle Hu ◽  
Jing Zhou ◽  
Bin Gao

With the development of Internet technology, Internet plus education has become a new mode of changing traditional education methods. Therefore, online physical education has attracted more and more attention. This paper introduces the sports object segmentation algorithm, designs an interactive multimedia online sports education platform by combining the research needs of sports online education platform, and analyzes online sports education from three aspects, sports teaching management, sports teaching resources, and sunshine sports activities, in order to improve the quality of sports education and improve students’ learning interest. Simulation results show that the algorithm is effective and can support the analysis of interactive multimedia online physical education platform.


2022 ◽  
Vol 6 ◽  
pp. 282
Author(s):  
Trisha Greenhalgh ◽  
Aris Katzourakis ◽  
Tristram D. Wyatt ◽  
Stephen Griffin

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted predominantly through the air in crowded and unventilated indoor spaces, especially among unvaccinated people. Universities and colleges are potential settings for its spread. Methods: An interdisciplinary team from public health, virology, and biology used narrative methods to summarise and synthesise evidence on key control measures, taking account of mode of transmission. Results: Evidence from a wide range of primary studies supports six measures.  Vaccinate (aim for > 90% coverage and make it easy to get a jab). Require masks indoors, especially in crowded settings. If everyone wears well-fitting cloth masks, source control will be high, but for maximum self-protection, respirator masks should be worn.  Masks should not be removed for speaking or singing. Space people out by physical distancing (but there is no “safe” distance because transmission risk varies with factors such as ventilation, activity levels and crowding), reducing class size (including offering blended learning), and cohorting (students remain in small groups with no cross-mixing). Clean indoor air using engineering controls—ventilation (while monitoring CO2 levels), inbuilt filtration systems, or portable air cleaners fitted with high efficiency particulate air [HEPA] filters). Test asymptomatic staff and students using lateral flow tests, with tracing and isolating infectious cases when incidence of coronavirus disease 2019 (COVID-19) is high. Support clinically vulnerable people to work remotely. There is no direct evidence to support hand sanitising, fomite controls or temperature-taking. There was no evidence that freestanding plastic screens, face visors and electronic air-cleaning systems are effective. Conclusions: The above evidence-based measures should be combined into a multi-faceted strategy to maximise both student safety and the continuation of in-person and online education provision. Those seeking to provide a safe working and learning environment should collect data (e.g. CO2 levels, room occupancy) to inform their efforts.


2021 ◽  
Vol 6 ◽  
pp. 282
Author(s):  
Trisha Greenhalgh ◽  
Aris Katzourakis ◽  
Tristram D. Wyatt ◽  
Stephen Griffin

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted predominantly through the air in crowded and unventilated indoor spaces among unvaccinated people. Universities and colleges are potential settings for its spread. Methods: An interdisciplinary team from public health, virology, and biology used narrative methods to summarise and synthesise evidence on key control measures, taking account of mode of transmission. Results: Evidence from a wide range of primary studies supports six measures. Vaccinate (aim for > 90% coverage and make it easy to get a jab). Require masks indoors, especially in crowded settings. If everyone wears well-fitting cloth masks, source control will be high, but for maximum self-protection, respirator masks should be worn.  Masks should not be removed for speaking or singing. Space people out by physical distancing (but there is no “safe” distance because transmission risk varies with factors such as ventilation, activity levels and crowding), reducing class size (including offering blended learning), and cohorting (students remain in small groups with no cross-mixing). Clean indoor air using engineering controls—ventilation (while monitoring CO2 levels), inbuilt filtration systems, or portable air cleaners fitted with high efficiency particulate air [HEPA] filters). Test asymptomatic staff and students using lateral flow tests, with tracing and isolating infectious cases when incidence of coronavirus disease 2019 (COVID-19) is high. Support clinically vulnerable people to work remotely. There is no direct evidence to support hand sanitising, fomite controls or temperature-taking. There is evidence that freestanding plastic screens, face visors and electronic air-cleaning systems are ineffective. Conclusions: The above six evidence-based measures should be combined into a multi-faceted strategy to maximise both student safety and the continuation of in-person and online education provision. Staff and students seeking to negotiate a safe working and learning environment should collect data (e.g. CO2 levels, room occupancy) to inform conversations.


2020 ◽  
pp. 431-449
Author(s):  
Oleg V. Shekatunov ◽  
Konstantin G. Malykhin

The article is devoted to the specifics of studying the industrial labour force of Russia in the 1920s - 1930s in Russian historiography. The various stages of study from the 1920s through the 1930s and up to the last years are concerned. The relevance of the study is due to several factors. These include contradictions in the assessments of Bolshevik modernization of the 1920s and 1930s; projected labour force shortages in modern Russia; as well as the existing labour force shortage in industry at the moment. This determines the relevance of studying the historical period, which was characterized by the most acute personnel problems in the country. The novelty of the study is due to the fact that in modern Russian historiography there is no holistic, integrated view of the problems of the labour force potential formation of Russian industry in the 1920s and 1930s. It is noted that there is no research aimed at analyzing the historiography of these problems. The main stages of the study of industrial labour force are highlighted. The analysis of scientific works correlated with each stage of the study of the topic is performed. The problems and methodology of each stage are considered. A review of a wide range of scientific papers both articles and thesis is presented.


2019 ◽  
Author(s):  
Michael Oschmann ◽  
Linus Johansson Holm ◽  
Oscar Verho

Benzofurans are everywhere in nature and they have been extensively studied by medicinal chemists over the years because of their chemotherapeutic and physiological properties. Herein, we describe a strategy that can be used to access elaborate benzo-2-carboxamide derivatives, which involves a synthetic sequence of 8-aminoquinoline directed C–H arylations followed by transamidations. For the directed C–H arylations, Pd catalysis was used to install a wide range of aryl and heteroaryl substituents at the C3 position of the benzofuran scaffold in high efficiency. Directing group cleavage and further diversification of the C3-arylated benzofuran products were then achieved in a single synthetic operation through the utilization of a two-step transamidation protocol. By bocylating the 8-aminoquinoline amide moiety of these products, it proved possible to activate them towards aminolysis with different amine nucleophiles. Interestingly, this aminolysis reaction was found to proceed efficiently without the need of any additional catalyst or additive. Given the high efficiency and modularity of this synthetic strategy, it constitute a very attractive approach for generating structurally-diverse collections of benzofuran derivatives for small molecule screening.


Edupedia ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 45-53
Author(s):  
Ilzam Dhaifi

The world has been surprised by the emergence of a COVID 19 pandemic, was born in China, and widespread to various countries in the world. In Indonesia, the government issued several policies to break the COVID 19 pandemic chain, which also triggered some pro-cons in the midst of society. One of the policies government takes is the closure of learning access directly at school and moving the learning process from physical class to a virtual classroom or known as online learning. In the economic sector also affects the parents’ financial ability to provide sufficient funds to support the implementation of distance learning applied by the government. The implications of the distance education policy are of course the quality of learning, including the subjects of Islamic religious education, which is essentially aimed at planting knowledge, skills, and religious consciousness to form the character of the students. Online education must certainly be precise, in order to provide equal education services to all students, prepare teachers to master the technology, and seek the core learning of Islamic religious education can still be done well.


Author(s):  
S.V. Borshch ◽  
◽  
R.M. Vil’fand ◽  
D.B. Kiktev ◽  
V.M. Khan ◽  
...  

The paper presents the summary and results of long-term and multi-faceted experience of international scientific and technical cooperation of Hydrometeorological Center of Russia in the field of hydrometeorology and environmental monitoring within the framework of WMO programs, which indicates its high efficiency in performing a wide range of works at a high scientific and technical level. Keywords: World Meteorological Organization, major WMO programs, representatives of Hydrometeorological Center of Russia in WMO


2019 ◽  
Vol 26 (23) ◽  
pp. 4403-4434 ◽  
Author(s):  
Susimaire Pedersoli Mantoani ◽  
Peterson de Andrade ◽  
Talita Perez Cantuaria Chierrito ◽  
Andreza Silva Figueredo ◽  
Ivone Carvalho

Neglected Diseases (NDs) affect million of people, especially the poorest population around the world. Several efforts to an effective treatment have proved insufficient at the moment. In this context, triazole derivatives have shown great relevance in medicinal chemistry due to a wide range of biological activities. This review aims to describe some of the most relevant and recent research focused on 1,2,3- and 1,2,4-triazolebased molecules targeting four expressive NDs: Chagas disease, Malaria, Tuberculosis and Leishmaniasis.


Author(s):  
J. Schiffmann

Small scale turbomachines in domestic heat pumps reach high efficiency and provide oil-free solutions which improve heat-exchanger performance and offer major advantages in the design of advanced thermodynamic cycles. An appropriate turbocompressor for domestic air based heat pumps requires the ability to operate on a wide range of inlet pressure, pressure ratios and mass flows, confronting the designer with the necessity to compromise between range and efficiency. Further the design of small-scale direct driven turbomachines is a complex and interdisciplinary task. Textbook design procedures propose to split such systems into subcomponents and to design and optimize each element individually. This common procedure, however, tends to neglect the interactions between the different components leading to suboptimal solutions. The authors propose an approach based on the integrated philosophy for designing and optimizing gas bearing supported, direct driven turbocompressors for applications with challenging requirements with regards to operation range and efficiency. Using previously validated reduced order models for the different components an integrated model of the compressor is implemented and the optimum system found via multi-objective optimization. It is shown that compared to standard design procedure the integrated approach yields an increase of the seasonal compressor efficiency of more than 12 points. Further a design optimization based sensitivity analysis allows to investigate the influence of design constraints determined prior to optimization such as impeller surface roughness, rotor material and impeller force. A relaxation of these constrains yields additional room for improvement. Reduced impeller force improves efficiency due to a smaller thrust bearing mainly, whereas a lighter rotor material improves rotordynamic performance. A hydraulically smoother impeller surface improves the overall efficiency considerably by reducing aerodynamic losses. A combination of the relaxation of the 3 design constraints yields an additional improvement of 6 points compared to the original optimization process. The integrated design and optimization procedure implemented in the case of a complex design problem thus clearly shows its advantages compared to traditional design methods by allowing a truly exhaustive search for optimum solutions throughout the complete design space. It can be used for both design optimization and for design analysis.


2021 ◽  
Vol 11 (14) ◽  
pp. 6549
Author(s):  
Hui Liu ◽  
Ming Zeng ◽  
Xiang Niu ◽  
Hongyan Huang ◽  
Daren Yu

The microthruster is the crucial device of the drag-free attitude control system, essential for the space-borne gravitational wave detection mission. The cusped field thruster (also called the High Efficiency Multistage Plasma Thruster) becomes one of the candidate thrusters for the mission due to its low complexity and potential long life over a wide range of thrust. However, the prescribed minimum of thrust and thrust noise are considerable obstacles to downscaling works on cusped field thrusters. This article reviews the development of the low power cusped field thruster at the Harbin Institute of Technology since 2012, including the design of prototypes, experimental investigations and simulation studies. Progress has been made on the downscaling of cusped field thrusters, and a new concept of microwave discharge cusped field thruster has been introduced.


Sign in / Sign up

Export Citation Format

Share Document