Features of use of unlawful kaolin for the manufacture of a cement clinker
Results over of research of the silicate systems of carbonate raw material with the varieties of clay component for making of cement clinker. The features of the chemical-mineralogical composition, phase transformations during burning and astringent properties of clinker are shown when unenriched kaolin and fly ash are used as alumina-silica-containing components of the initial raw material mixture. In the chemical technology of hydraulic mineral astringents, clay raw material serves, first of all, as a source of SiO , Al O , Fe O oxides, which must form from CaO during the baking of crystalline phases of silicates, aluminates and calcium aluminferrite, with the development of which impart the properties of the product of production. In turn, the above oxides arise in the process of technology during the heat treatment of raw mixtures due to the destruction of the lattice of rock-forming minerals. Hence the obvious dependence of the number and reactivity of oxides on the chemical and mineralogical composition of clay raw material, which, according to essential differences, is classified into a number of groups. Deepening of scientific ideas about this dependence can become an additional factor for im- proving the intensification of the technology of silicate binders, which became the subject of research in the given work. The chemical and mineralogical composition of the clay component of raw materials for the production of clinker and cement based on it is an important factor in the structure of the binder material at the stages of the technological process and the determination of the properties of the final product. Taking into account the peculiarities of the composition of unbleached kaolin (high content of kaolinite, quartz, feldspar), the feasibility of its application in the production of cement for clinker production is related to the possibility of adjusting the kinetics and the direction of phase transformations during the burning of the material. From the point of view of resource conservation and technology, the complex application of aluminum and silicon-containing raw materials components of natural (unaffected kaolin) and man-made (fly ash) origin is shown. Deepening of scientific ideas about this dependence can become an additional factor for improving the intensification of the technology of silicate binders, which became the subject of research in the given work.