scholarly journals Features of use of unlawful kaolin for the manufacture of a cement clinker

Author(s):  
M.Yu. Tsybenko ◽  
L.P. Chernyak ◽  
V.G. Salnik ◽  
N.O. Dorogan

Results over of research of the silicate systems of carbonate raw material with the varieties of clay component for making of cement clinker. The features of the chemical-mineralogical composition, phase transformations during burning and astringent properties of clinker are shown when unenriched kaolin and fly ash are used as alumina-silica-containing components of the initial raw material mixture. In the chemical technology of hydraulic mineral astringents, clay raw material serves, first of all, as a source of SiO , Al O , Fe O oxides, which must form from CaO during the baking of crystalline phases of silicates, aluminates and calcium aluminferrite, with the development of which impart the properties of the product of production. In turn, the above oxides arise in the process of technology during the heat treatment of raw mixtures due to the destruction of the lattice of rock-forming minerals. Hence the obvious dependence of the number and reactivity of oxides on the chemical and mineralogical composition of clay raw material, which, according to essential differences, is classified into a number of groups. Deepening of scientific ideas about this dependence can become an additional factor for im- proving the intensification of the technology of silicate binders, which became the subject of research in the given work. The chemical and mineralogical composition of the clay component of raw materials for the production of clinker and cement based on it is an important factor in the structure of the binder material at the stages of the technological process and the determination of the properties of the final product. Taking into account the peculiarities of the composition of unbleached kaolin (high content of kaolinite, quartz, feldspar), the feasibility of its application in the production of cement for clinker production is related to the possibility of adjusting the kinetics and the direction of phase transformations during the burning of the material. From the point of view of resource conservation and technology, the complex application of aluminum and silicon-containing raw materials components of natural (unaffected kaolin) and man-made (fly ash) origin is shown. Deepening of scientific ideas about this dependence can become an additional factor for improving the intensification of the technology of silicate binders, which became the subject of research in the given work.

2019 ◽  
Vol 16 (3) ◽  
pp. 352-365
Author(s):  
A. K. Matyeva

Introduction. The creation of energy-saving materials involves the use of local raw materials for products with improved physic-mechanical properties. The author carries optimization of the rational composition and properties of modified arbolite from plant-gypsum composition (PGC). In addition, the author uses modifiers on new ways of preparing the aggregate according to the method of experimental and statistical modeling.Materials and methods. The author used the cereal straw grown in the Kyrgyz Republic (CS), G-5 and G-7 construction gypsum based on local raw materials, ash from the Bishkek Heat and Power Plant (BHPP), portland cement clinker PCC, natural clay (ganch). Moreover, the clay component of the Toloykonsky deposit was used as the clay component. The author also added the liquid glass, latex SCS, the low-concentration resin LCR-3066 + catalyst of ionic type (CIT) as modifiers for the formation of the porous polymer-silicate systems. The paper marked the plasticizing additives in the manufacture of arbolite as SCS, LCR and CIT components. As a retarder the setting of gypsum was added a partial salt 1-hydroxyethylidene-1, 1-diphosphonic acid with triethanolamine and flame retardants. The tests were carried out according to standard methods. To optimize the composition and properties of the polymersilicate-gypsum composition (PSGC), the author carried out a three-factor experiment according to the B3 plan, where three prescription factors varied: X1 – straw content,%; X2 – content of polymer silicate additives (PSA) + plasticizer,%; X3 – gypsum content + portland cement clinker as a nitroperimethyl phosphoric acid (NPA) and flame gypsum retarder.Results. The research showed that at 28 days of age for cement-free gypsum compositions as the content of straw increased, the strength was almost unchanged. When comparing the strength of the same samples of 2 and 28 days strength with the maximum filling of gypsum, the author defined that the PSA content should not exceed 12% when the straw additive was 26% and further PSA increasing did not increase the strength.Discussion and conclusions. As a result, the author achieves maximum strength of the arbolit, when the content of G-7 gypsum is 28-32%, ash is 18-22% and PSC is 8-10%. The maximum value of strength and water resistance of the material is achieved with a rational ratio of components: straw – 24–28%, G-7 gypsum – 30–32% + NSPL – 0,05%; ash – 18–22%; resin – 3066-8-12% + catalyst – 0,3% (87% sulfuric acid, 13% phosphoric acid); PCC – 3–5%; clay-gypsum (ganch) – 2%; liquid sodium glass – 12%; plasticizers CIT – 0,15%, SCS – 0,2%, LCR – 0,15%; modified hardener – 0,5% and water.


2020 ◽  
Vol 10 (1) ◽  
pp. 49
Author(s):  
Suharto Suharto ◽  
Muhammad Amin ◽  
Muhammad Al Muttaqii ◽  
Syafriadi Syafriadi ◽  
Kiki Nurwanti

Experimental study on the use of basalt stone originated from Lampung has been conducted to evaluate its potential for a partial substitute of raw material in production of cement clinker. The basalt stone contains minerals of anorthite, augite, and albite phases that are required for clinker formation. In this study, the main raw materials were 80% limestone, 10% silica sand, 9% clay and 1% iron sand. The raw material in these experiments were mixtures 90% or 80% of the main raw material and 10% or 20% of basalt stone. The effect of adding coal to raw materials was also studied to see the possibility of an increase in clinkerization temperature inside the raw material mixture, and at the same time to see the effect of coal ash on clinker composition. Clinker obtained from heating of raw materials at a temperature of 1100oC had LSF of 94.1% and 95.1% (heating time of 1 and 3 hours). If heating is carried out at 1200oC, the clinker had LSF of 97.7% and 98.0% (heating time of 2 and 3 hours, respectively). Depending on the temperature and duration of heating, the clinker mostly had SM in the range of 2.18-2.40% , and AM in the range of 0,78-1.80%. Characterization using XRD showed that the clinker consisted of larnite and gehlenite phases, and dominated by CaO.Batu basalt Lampung telah diuji potensinya sebagai pengganti sebagian bahan baku utama pembuatan klinker semen. Batu basalt tersebut memiliki mineral-mineral dalam fase anorthite, augite, dan albite yang diperlukan pada pembentukan klinker. Pada penelitian ini, bahan baku utama adalah batu kapur 80%, pasir silika 10%, tanah liat 9% dan pasir besi 1%. Campuran bahan baku klinker adalah 90% atau 80% bahan baku utama dan 10% atau 20% batu basalt. Efek penambahan batubara ke dalam bahan baku klinker juga dipelajari untuk melihat kemungkinan kenaikan temperatur klinkerisasi di dalam campuran bahan baku, dan sekaligus untuk melihat efek abu batubara terhadap komposisi klinker. Klinker hasil pemanasan bahan baku pada temperatur 1100oC memiliki LSF 94,1% dan 95,1% (lama pemanasan 1 dan 3 jam). Jika pemanasan dilakukan pada 1200oC, klinker memilik LSF 97,7% dan 98,00% (lama pemanasan 2 dan 3 jam). Tergantung pada temperatur dan lama pemanasan, klinker hasil percobaan ini umumnya memiliki SM 2,18-2,40%, dan AM antara 0,78-1,80%. Karakterisasi dengan XRD menunjukkan bahwa klinker terdiri dari fase larnite dan gehlenite, dan didominasi CaO.


1989 ◽  
Vol 178 ◽  
Author(s):  
Kirsten G. Jeppesen

AbstractSpray dried absorption products (SDA) having special characteristics are used as substitutes for cement in the preparation of mortars; the qualities of the resulting mixed mortars are described. Conditions are described for mortar mixes, data for which were presented at the MRS Fall Meeting 1987.The influence of the composition of the SDA on water requirement and setting time has been studied. A full scale project involving 3 precast, reinforced concrete front-elements containing 20 and 30 wt.% SDA is described. Strength development, mineralogical composition and corrosion were monitored for two years.A non-standard freeze-thaw experiment was performed which compares mortars containing SDA and fly ash (FA) and also shows the effect of superplasticizer.The possibility of improving the SDA by grinding has been tested and a limited improvement has been found. The strength of the mixed mortars seems slightly influenced by the grain size of SDAGypsum (CaSO4·2H2O), synthetic calcium-sulphite (CaSO3·½H2O) and 2 SDAs have been used as retarders for cement clinker. Mortar test prisms have been cast and comparative strengths after curing for 3 years are reported


2020 ◽  
Vol 4 (2) ◽  
Author(s):  
Dwi Septiyana Sari ◽  
◽  
Susanti Sundari

Abstract This study discusses the use of fly ash waste from coal burning on the manufacture of PCC (Portland composite cement) at PT. XYZ Lampung. The purpose of this research is to look at the technical studies and the efficiency of raw materials in the use of fly ash in cement making, in this case PCC cement (Portland Composite Cement). The steps taken in analyzing the data in this study were viewed from a technical aspect by means of a physical test, namely the cement compressive strength test at the age of 3 days, 7 days, and 28 days using the Compression Testing Machine. This test was conducted to see the comparison of the compressive strength of PCC cement using limestone and fly ash as raw materials, then calculate the difference in raw material costs in the year before and after the replacement of limestone with fly ash. The results showed that cement with the addition of fly ash after 3 days, 7 days and 28 days had an increased compressive strength value, which increased 21.69%, 16.07% and 8.05% respectively of the compressive strength of cement using limestone. The use of fly ash as a substitute for limestone has an effect on the cost of raw materials, where the difference between the cost of raw materials in 2019 and the cost of raw materials in 2018 is Rp. 39,440,952,074.


2011 ◽  
Vol 356-360 ◽  
pp. 1900-1908 ◽  
Author(s):  
Juliana De Carvalho Izidoro ◽  
Denise Alves Fungaro ◽  
Shao Bin Wang

A Brazilian fly ash sample (CM1) was used to synthesize zeolites by hydrothermal treatment. Products and raw materials were characterized in terms of real density (Helium Pycnometry), specific surface area (BET method), morphological analysis (SEM), chemical composition (XRF) and mineralogical composition (XRD). The zeolites (ZM1) from fly ash were used for metal ion removal from water. Results indicated that hydroxy-sodalite zeolite could be synthesized from fly ash sample. The zeolite presented higher specific surface area and lower SiO2/Al2O3ratio than the ash precursor. The adsorption showed that cadmium is more preferentially adsorbed on ZM1 than zinc. The adsorption equilibrium time for both Zn2+and Cd2+was 20 hours in a batch process. The adsorption isotherms were better fitted by the Langmuir model and the highest percentages of removal using ZM1 were obtained at pH 6 and 5 and doses of 15 and 18 g L-1for Zn2+and Cd2+, respectively. Thermodynamic studies indicated that adsorption of Zn2+and Cd2+by ZM1 was a spontaneous, endothermic process and presented an increase of disorder at the interface solid/solution.


2012 ◽  
Vol 724 ◽  
pp. 347-350 ◽  
Author(s):  
Qing Wen Duan ◽  
Rong Zhen Liu ◽  
Hai Yun Jin ◽  
Jian Feng Yang ◽  
Zhi Hao Jin

Porous SiC/SiAlON ceramics were fabricated by carbothermal reduction method from raw materials of fly ash and semi coke in nitrogen atmosphere. The results showed that composites were composed by multi-structure of SiC, Ca-SiAlON and AlN phases. With the increase of semi coke contents, the contents of Ca-Sialon increased. The fracture mode of this material was intergranular. The results also showed that micro area hereditary of semi coke particles was observed in the morphology of this material. The morphology of this material was composed by nanosized SiC and plate like Ca-SiAlON. The median pore diameter was affected by the contents of semi coke and increased with the increase of semi coke content.


2017 ◽  
Vol 726 ◽  
pp. 510-514
Author(s):  
Shi Zhen Zhao ◽  
Feng Lan Han ◽  
Gui Qun Liu ◽  
Mao Hui Li ◽  
Yu Jie Chen

By using Mn slag, Mg slag and Fly ash which comes from industrial process in Ningxia province as raw materials, the sulpoaluminate cement was prepared via sintering raw materials in a furnace. The physical and chemical characteristic of sulpoaluminate cement clinker was tested. The optimal proportion of clinkers is also determined by the results of phase composition, microstructure and hydration mechanism. The results shows that when the mixed ratio of Mn slag, Mg slag and Fly ash is 21%, 21% and 0% respectively in the raw materials and the calcination temperature is 1300 °C for 30 min, sulphoaluminate cement clinker with maximum amount of C4A3S, C2S and C4AF was prepared. Then, natural gypsum was added into the clinker powder with a ratio of 15% to make cement materials. When water to cement ratio is 0.5 and cement to sand ratio is 1:3, the cement mortar obtain a compressive strength of 22.22 MPa at 3d, 31.2 MPa at 7 d, and the flexural strength of 3.86MPa at 3d, and 4.83 MPa at 7d respectively.


2016 ◽  
Vol 690 ◽  
pp. 109-113 ◽  
Author(s):  
Sutthima Sriprasertsuk ◽  
Phatthiya Suwannason ◽  
Wanna T. Saengchantara

This work investigated the recycling of fly ash waste and cullet as the raw materials for lightweight bodies produced by heat treatment and using sodium silicate as the binder. Borax was mixed with fly ash and cullet, and put into the block in dimension 10x10x2 cm3. The lightweight materials thus produced were then sintered at temperature of 800 °C. Density, compressive strength and thermal conductivity were determined. Borax showed a positive sintering effect on the porosity of lightweight material during the heat process. The compressive strength of lightweight material diminished with the reduction of density and thermal conductivity. Lightweight material manufactured with borax showed the lower density and thermal conductivity accompanied by the higher compressive strength. The test results indicated that using fly ash and cullet as the raw material with borax could obtain the lightweight material, thus enhancing the possibility of its reuse in a sustainable way.


2013 ◽  
Vol 389 ◽  
pp. 341-345 ◽  
Author(s):  
Ya Li Wang ◽  
Shi Jie Dong ◽  
Lin Lin Liu ◽  
Su Ping Cui ◽  
Hai Bo Xu

Calcium carbide Slag is one kind of industrial wastes from CaC2 hydrolysis reaction that will cause land pollution. In the research, calcium carbide Slag used as a substitute for limestone to produce cement clinker, which with a high portion of CaO content and then an excellent calcium containing raw material. As a kind of industrial wastes, the properties of Calcium carbide slag differentiate from that of natural limestone. The formation process of clinker minerals was studied by means of XRD. The results indicated that clinker minerals formation is similar to that from use of limestone. The generated clinker has a rational mineral composition and well developed mineral phase structure. But, there are many differences in decomposition temperatures between the calcium containing raw materials. Therefore, the carbide slag can be used as a substitute of limestone raw material to produce cement clinker.


2016 ◽  
Vol 722 ◽  
pp. 168-172
Author(s):  
Karel Kulísek ◽  
Dominik Gazdič ◽  
Karel Dvořák ◽  
Marcela Fridrichová

The present work focuses on the use of fluid fly ash for Portland clinker burning. Fluid ashes are carriers of all basic oxides represented in the cement raw meal. However, while the share of hydraulic oxides is in ashes sufficient, there is a significant deficiency in calcium oxide content. Preliminary studies have shown that the combination thereof with calcite as the second essential component of the fluid fly-ashes for the raw material based on Portland clinker burning application, it is necessary to solve a problematic issues. The first one concerns the potential leakage SOx resulting from decomposition of CaSO4 ash into the atmosphere. The second circumstance is the correction tracks raw meal in order to redistribute in the samples prepared under the initial studies, the obtained clinker minerals content in favor of calcium silicate, of them further in favor of alite. The last issue is the evaluation of the impact of fluid utilization of fly ash as a partial raw material bases for reducing CO2 emissions in the Portland clinker burning.


Sign in / Sign up

Export Citation Format

Share Document