Axial Compression Behaviour of Concrete-Filled Double-Layer Steel Tubular Column

Author(s):  
Li Wencong

<p>Nowadays, height of supertall buildings with height over 300 meters have been successively renewed in the world. To improve the global stability of the supertall building, mega-columns with excellent seismic, wind-resistance and axial compressive performance are recommended to be set in its perimeter. Concrete-filled double-layer steel tubular column (CFDLT column) transforming from the concrete-filled double-skin steel tubular column (CFDST column) by filling the hollow part of cross-section with concrete was proposed by the author. In this study, axial compression tests of CFDLT column, CFDST column and conventional concrete-filled steel tubular column (CFT column) specimens were carried out to investigate the axial compression behaviour of them. The experimental results showed that the CFDLT column specimen exhibits higher axial compressive strength and larger energy dissipation capacity than the CFDST column and the conventional CFT column specimens. It was found that the axial stiffness of CFDLT column degrades slower than that of the conventional CFT column right after the peak load. And, it is expected that the CFDLT column can be used as a mega-column in the tomorrow’s supertall buildings.</p>

The analysis of the previous results of the study on concrete stress-strain behavior at elevated temperatures has been carried out. Based on the analysis, the main reasons for strength retrogression and elastic modulus reduction of concrete have been identified. Despite a significant amount of research in this area, there is a large spread in experimental data received, both as a result of compression and tension. In addition, the deformation characteristics of concrete are insufficiently studied: the coefficient of transverse deformation, the limiting relative compression deformation corresponding to the peak load and the almost complete absence of studies of complete deformation diagrams at elevated temperatures. The two testing chambers provided creating the necessary temperature conditions for conducting studies under bending compression and tension have been developed. On the basis of the obtained experimental data of physical and mechanical characteristics of concrete at different temperatures under conditions of axial compression and tensile bending, conclusions about the nature of changes in strength and deformation characteristics have been drawn. Compression tests conducted following the method of concrete deformation complete curves provided obtaining diagrams not only at normal temperature, but also at elevated temperature. Based on the experimental results, dependences of changes in prism strength and elastic modulus as well as an equation for determining the relative deformation and stresses at elevated temperatures at all stages of concrete deterioration have been suggested.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Chao Zuo ◽  
Zuoshuai Wang ◽  
Wentie Yang ◽  
Jiangjun Ruan ◽  
Liezheng Tang

2021 ◽  
Vol 21 (2) ◽  
Author(s):  
A. Mujdeci ◽  
D. V. Bompa ◽  
A. Y. Elghazouli

AbstractThis paper describes an experimental investigation into confinement effects provided by circular tubular sections to rubberised concrete materials under combined loading. The tests include specimens with 0%, 30% and 60% rubber replacement of mineral aggregates by volume. After describing the experimental arrangements and specimen details, the results of bending and eccentric compression tests are presented, together with complementary axial compression tests on stub-column samples. Tests on hollow steel specimens are also included for comparison purposes. Particular focus is given to assessing the confinement effects in the infill concrete as well as their influence on the axial–bending cross-section strength interaction. The results show that whilst the capacity is reduced with the increase in the rubber replacement ratio, an enhanced confinement action is obtained for high rubber content concrete compared with conventional materials. Test measurements by means of digital image correlation techniques show that the confinement in axial compression and the neutral axis position under combined loading depend on the rubber content. Analytical procedures for determining the capacity of rubberised concrete infilled cross-sections are also considered based on the test results as well as those from a collated database and then compared with available recommendations. Rubber content-dependent modification factors are proposed to provide more realistic representations of the axial and flexural cross-section capacities. The test results and observations are used, in conjunction with a number of analytical assessments, to highlight the main parameters influencing the behaviour and to propose simplified expressions for determining the cross-section strength under combined compression and bending.


2021 ◽  
pp. 113986
Author(s):  
Arvind Sharda ◽  
Allan Manalo ◽  
Wahid Ferdous ◽  
Yu Bai ◽  
Lachlan Nicol ◽  
...  

2019 ◽  
Vol 28 (1) ◽  
pp. 81-88
Author(s):  
Miguel A. González-Montijo ◽  
Hildélix Soto-Toro ◽  
Cristian Rivera-Pérez ◽  
Silvia Esteves-Klomsingh ◽  
Oscar Marcelo Suárez

AbstractHistorically known for being one of the major pollutants in the world, the construction industry, always in constant advancement and development, is currently evolving towards more environmentally friendly technologies and methods. Scientists and engineers seek to develop and implement green alternatives to conventional construction materials. One of these alternatives is to introduce an abundant, hard to recycle, material that could serve as a partial aggregate replacement in masonry bricks or even in a more conventional concrete mixture. The present work studied the use of 3 different types of repurposed plastics with different constitutions and particle size distribution. Accordingly, several brick and concrete mix designs were developed to determine the practicality of using these plastics as partial aggregate replacements. After establishing proper working material ratios for each brick and concrete mix, compression tests as well as tensile tests for the concrete mixes helped determine the structural capacity of both applications. Presented results proved that structural strength can indeed be reached in a masonry unit, using up to a 43% in volume of plastic. Furthermore, a workable structural strength for concrete can be achieved at fourteen days of curing, using up to a 50% aggregate replacement. A straightforward cost assessment for brick production was produced as well as various empirical observations and recommendations concerning the feasibility of each repurposed plastic type examined.


2008 ◽  
Vol 1 (2) ◽  
pp. 158-170 ◽  
Author(s):  
F. L. De Oliveira ◽  
J. B. De Hanai

This paper presents the results of a series of axial compression tests on concrete block wallettes coated with cement mortar overlays. Different types of mortars and combinations with steel welded meshes and fibers were tested. The experimental results were discussed based on different theoretical approaches: analytical and Finite Element Method models. The main conclusions are: a) the application of mortar overlays increases the wall strength, but not in a uniform manner; b) the strengthening efficiency of wallettes loaded in axial compression is not proportional to the overlay mortar strength because it can be affected by the failure mechanisms of the wall; c) steel mesh reinforced overlays in combination with high strength mortar show better efficiency, because the steel mesh mitigates the damage effects in the block wall and in the overlays themselves; d) simplified theoretical methods of analysis as described in this paper can give satisfactory predictions of masonry wall behavior up to a certain level.


Author(s):  
JianHua Shao ◽  
XiaoFeng Ye ◽  
ZaiHui Wang ◽  
XianBin Huang
Keyword(s):  

1970 ◽  
Vol 24 (4) ◽  
pp. 295-304 ◽  
Author(s):  
Krešimir Grilec ◽  
Gojko Marić ◽  
Katica Miloš

The requirements for weight reduction and improvement of performances in the design of transport means are often in contradiction to the requirements for increased safety. One of the possible ways of meeting these requirements is the application of metal foams. Thanks to cellular structure of aluminium foam along with low weight, the capability of noise and vibration damping, they feature also excellent capabilities of absorbing impact energy. Their application in the production of impact-sensitive elements of mobile or stationary transport means has significantly contributed to the reduction of the impact or collision consequences.The focus of this paper is on improving the energy absorption characteristics of aluminium foams considering the significance of their application for the technology of traffic and transport.The paper analyzes the influence of the chemical composition and density on the compression behaviour of aluminium foam. The aluminium foam samples were produced from Alulight precursor. The capability of samples to absorb mechanical energy has been estimated according to the results of compression tests. The tests were performed on a universal test machine. The test results showed that aluminium foams feature good energy absorption and the absorption capability decreases with the foam density. The Alulight AlMgSi 0.6 TiH2 - 0.4 foam can absorb more energy than Alulight AlSi 10 TiH2 – 0.8 foam.


2011 ◽  
Vol 243-249 ◽  
pp. 704-709
Author(s):  
Chun Yi Xu ◽  
Ming Liu ◽  
Bo Xu

To study the influence of slenderness on the compressive bearing capacity of autoclaved fly ash perforated brick masonry long columns and provide experimental evidences for making corresponding technical code, compression tests were conducted on 9 autoclaved fly ash perforated brick masonrys long columns of different slenderness. The damage patterns and compression performance are analyzed. The experimental results indicate that compressive capacity decreases proportionally as slenderness increases and the proposed formula of axial compressive bearing capacity for autoclaved fly ash perforated brick masonry columns is given. The nonlinear FEA program ANSYS is also adopted to simulate the behaviors of masonry columns. By comparing results find that the simulated results agree well with the test ones, the rationality and applicability of the model are verified.


Sign in / Sign up

Export Citation Format

Share Document