scholarly journals Prospects for the use of diabases of the crystal base of Belarus to obtain silicate materials

Author(s):  
S. E. Barantseva ◽  
Yu. A. Klimosh ◽  
N. N. Gundilovich ◽  
A. I. Pazniak ◽  
A. A. Tolkachikova ◽  
...  

The paper presents the study results of diabases of rare-earth and beryllium-containing deposit of the Republicof Belarusin order to determine their suitability for the production of silicate materials and products for various purposes. The data obtained allowed developing raw compositions and optimizing the technological parameters to produce glass, mineral fibers, glass ceramics, stone casting, ceramic bricks and tiles, as well as porous aggregates. The regularities of structure and phase formation during high-temperature treatment of raw compositions of silicate materials using diabases are established. The results of the work allow us to establish the features of the production of silicate materials containing diabase as main raw material of compositions, to increase mineral and raw-materials base of Belarusand to improve the environmental situation in mining enterprises.

2014 ◽  
Vol 602-603 ◽  
pp. 640-643
Author(s):  
Yu Fei Chen ◽  
Yan Gai Liu ◽  
Xiao Wen Wu ◽  
Zhao Hui Huang ◽  
Ming Hao Fang

Mica glass-ceramics can be applied in all kinds of electrical equipment, locomotive internal circuits in high-speed rail, ordinary electric locomotive and subway locomotive. In this study, mica glass-ceramics were prepared by sintering process using flake mica and waste glass as the main raw material with low cost. Different mica glass-ceramic samples were fabricated by changing the formula of raw materials, molding process and sintering temperature. X-ray diffraction, scanning electron microscopy, three-point bending test, and balanced-bridge technique were applied to investigate the phase, microstructure, mechanical and electrical resistivities of the samples, respectively. The results show that the optimum sintering temperature is 900 to 1000 °C holding for two hours, the desirable ratio is 70 wt% of mica powder while 30 wt% of glass powder. In that condition the sample could be less porosity, high flexural strength (63.3 MPa) and eligible electrical resistivity (0.4×1013 Ω·cm).


2019 ◽  
Vol 51 (3) ◽  
pp. 285-294
Author(s):  
Dang Wei ◽  
H.-Y. He

High strength lightweight glass-ceramics were fabricated with coal gangue and clay as main raw materials. The utilization ratio of coal gangue, the ratio of the coal gangue with clay, mineralization agents, forming process and sintering process on the properties of the fabricated glass-ceramics were optimized. The utilization ratio of coal gangue reached 75, and the ratio of coal gangue to clay was 3/1, as an optimal property was observed. The optimal sintering temperature was found to be 1370?C. At this optimal temperature, the sintered glass-ceramics showed the main phase of mullite and spindle and so showed high strength, low density, and low water absorbance. The appropriate amounts of codoping of the TiO2, ZnO, and MnO2/dolomite as mineralization agents obviously enhanced the properties of the glass-ceramics. Process optimizations further determined reasonable and optimal process parameters. The high strength lightweight glass-ceramics fabricated in this work may be very suitable for various applications including building materials, cooking ceramics, and proppant materials, et al.


2018 ◽  
Vol 56 ◽  
pp. 23-33
Author(s):  
Mar Rey-Solé ◽  
Maria Pilar García-Argüelles ◽  
Jordi Nadal ◽  
Xavier Mangado ◽  
Anders Scherstén ◽  
...  

The l’Hort de la Boquera site is located in the northeastern part of Iberia and its stone tool assemblage includes up to 25,000 flint artefacts. This is the first approach to the analysis of the raw material through an archaeopetrological study. Results were obtained by use of mineralogi¬cal techniques: macroscopic and petrographic analysis, Scanning Electronic Microscopy (SEM), Micro-Raman and X-Ray diffraction (XRD); additionally, Laser Ablation Inductively Coupled Plasma Mass Spectrometry was applied. It has been possible to discriminate at least four flint categories, the ‘Evaporitic flint type’ (with two local subvarieties – ‘Common evaporitic’ and ‘Garnet’ varieties) that comes from local outcrops of the Ulldemolins Complex, and two flint types that had their origin further afield: the ‘Charophyta flint type’ (coming from the Torrente de Cinca Unit) and the ‘Dark flint type’ (from the La Serra Llarga Formation).These results make this study the most comprehensive analysis of raw materials that has been carried out in the area so far


2021 ◽  
Vol 12 (4) ◽  
pp. 1068-1086
Author(s):  
Maricélia Almeida Dos Santos ◽  
Bruna Borges Soares ◽  
Lucas Farias De Sousa ◽  
Edmar Costa Alves

The production of cosmetics has received attention due to the high demand for beauty and personal care items. In contrast, negative interferences are related to this sector, from obtaining the raw material to the final disposal of packaging. This study aimed to identify critical points and opportunities for environmental improvements in the cosmetic industry in southern Bahia based on the principles of Cleaner Production (CP). The methodology used was based on the principles of Cleaner Production proposed by UNEP/UNIDO and the data collection was carried out through on-site visits including consultation to the company’s files. Also was realized a cross-analysis of the study results with elements identified in the literature that allowed the identification and discussion of CP opportunities, as well as suggestions for improvements to the critical points found. The consumption of raw materials and the generation of solid waste were aspects with more critical points. The refuse of material and inadequate destination of solid residues (oil drums, pallets, among others), as well as the replacement of raw materials by alternative and renewable sources, reverse logistics implementation and redesign of the packaging process were the opportunities for improvement aimed. Other critical points were related to the consumption of water, energy and generation of atmospheric gases. The suggested proposals can promote the reduction in material waste, rework and productivity gains. In addition, they serve as a subsidy and direct environmentally actions more appropriate, once the "clean beauty industry" seems to be a growing trend and a business opportunity, as well as can be requested by environmentally responsible customers in some moments.


Author(s):  
A. Volodchenko

In the construction of buildings and structures, many wall materials are used, including silicate products of various functional purposes. In traditional production technology of such materials, the hardening process occurs due to the formation of a crystal structure in the CaO-SiO2-H2O system. There are various ways to modify the crystalline growth of the cementing substance, one of which is the use of various kinds of crystal seedings, in particular the use of natural and synthetic calcium hydrosilicates. The purpose of the experiments is to study the possibility of improving the performance properties of non-autoclave silicate composites by modifying the structure formation in the "lime-non-traditional aluminosilicate raw materials" system, which consists in the crystal-chemical regulation of the structure formation processes with a synthetic crystal filler CaO-SiO2-H2O (C-S-H). The use of synthetic crystalline filler C-S-H synthesized by hydrothermal synthesis in an autoclave at a pressure of 1 MPa and a temperature of 175 °C from a mixture of Ca(OH)2 and crystalline silica in a ratio different C/S=1 in the technology of non-autoclave silicate materials on the basis of alternative aluminium raw material allows to increase the operational indicators resulting products to 18 % or more. The optimal content of CaO and crystal filler C-S-H at which the maximum strength characteristics are provided is 8 % and 2.5 %, respectively, which allows to develop optimal compositions of raw materials for the technology of producing high-density non-autoclave silicate materials based on non-traditional aluminosilicate raw materials with a compressive strength of at least 20 MPa and more, with an average product density of no more than 2000 kg /m3.


Author(s):  
V. I. Tischenko ◽  
N. V. Bozhko ◽  
V. M. Pasichnyi ◽  
V. V. Brazhenko

Creation of combined meat products combining traditional consumer properties, as well as the possibility of using non-traditional raw materials in their recipes, is aimed at the expansion and rational use of the raw material base of the meat processing complex and solves the problem of reducing nutrient deficiency in the diet of the population. Therefore, the issue of the use of mechanically deboned poultry meat in meat bread technology and its impact on qualitative indicators and functional and technological properties is relevant. The aim of the research was to study the feasibility of the use of mechanically deboned poultry meat in the technology of combined products. Three model recipes based on the formula-meat analogue “Chainyyi” were developed. The possibility of replacing beef and pork meat with duck meat and mechanically deboned poultry meat of turkey was studied in the bread recipes. The total amount of duck meat and mechanically deboned poultry meat was 63%. As a protein ingredient able to bind moisture and relatively inexpensive compared to meat raw material, 20% of the pig's heart was added to the formulation, as well as 2% XB Fiber. Other components of the analogue formulation have not changed. Combination of duck meat with mechanically deboned poultry meat of turkey and pork hearts in the abovementioned ratios as part of meatcontaining bread stuffing systems allowed to improve the nutritional value of the product and its qualitative indices. The research confirmed the possibility of combining regional and relatively cheap raw materials to increase the nutritional value of meatcontaining products, namely breads. The bulk of proteins in the experimental samples increased by 6.57–10.38% and was within the range of 17.96–17.34%. On average, 4.98% decreased the fat content, the product became less calorie relative to the analogue by 15.98–16.76%. The formulations of model minced meat were distinguished by a higher index of the water-holding capacity, the content of binding moisture and the best indicators of plasticity. This affected the quantity of finished products, which amounted to 120.64–117.3% to the mass of raw materials, while in the control sample this figure was lower by 3.49–7.47%.


2021 ◽  
Vol 3 (11 (111)) ◽  
pp. 80-87
Author(s):  
Mykola Yatskov ◽  
Natalia Korchyk ◽  
Volodymyr Besediuk

For the functioning of integrated systems for processing dairy raw materials in the cheesemaking industry, it is proposed to consider the basic concepts of synthesis of production systems. In order to implement the concept of waste minimization, it is proposed to separate the industrial wastewater into flows based on the concentration and values of the main parameters, as well as to protect the cheese whey from entering the water treatment facilities and direct it for disposal. The possibilities of implementing the concepts of deep raw materials processing into a target product have been analyzed, as well as the full utilization of raw and auxiliary materials. To this end, an experimental study was performed on the extraction of protein clots and adjusting the buffer capacity of infant dairy products using cheese whey. The study results indicate the insufficient effect of extracting the protein clot from whey (5–50 %) by combining the thermal and chemical processes. It was established that the redox conditions of the medium, in terms of the Eh indicator, can significantly affect the results, in close connection with the pH parameter and the estimated value of rH2. It was found that the optimal conditions for the functioning of lactic acid microflora in the production of soft cheeses can be ensured by adjusting the Eh indicator through the introduction of whey of pH=4.4–4.6 units, Eh≤–0.1 V. Whey is introduced at the stage of dairy raw material fermentation, which creates optimal conditions for the formation of a clot until reaching rH2 in the range from −5 to –7, and increases the product output by 1.5–7 %. The results of the experimental study indicate the high potential of using whey desalinated by ion exchange in order to reduce the buffer capacity in terms of acidity and adjust the redox conditions for infant milk mixtures until achieving rH2=15.5–15.9. The research reported in this paper could be the basis for the further development of systems for the integrated processing of dairy raw materials in the cheesemaking industry


2018 ◽  
Vol 20 (90) ◽  
pp. 22-26
Author(s):  
Y. Matsuk ◽  
I. Marchenko ◽  
V. Pasichnyi

The article is devoted to the improvement of the recipes of minced meat products with using fish raw materials and the study of organoleptic and functional and technological properties of developed minced meat systems and finished products. The research has been carried out on the rational combining of meat and fish raw materials and the expansion of assortment of minced semi-finished products. The formulations of minced meat systems for the production of meat semi-finished with a partial replacement of the main raw material to fish raw materials have been developed. The organoleptic and functional and technological parameters of minced meat systems and finished products are investigated. According to the results of the organoleptic evaluation, it was found that partial replacement of meat raw material with minced fish does not worsen the sensory characteristics of minced meat products. It is established that in comparison with the control sample there is an improvement of functional and technological indicators. In particular, the moisture content increased by an average of 6.1%, moisture absorption capacity – 5.91%, energy absorption capacity – 2.49%, fat-retaining ability – 2.52%. The obtained results confirmed the expediency of using minced meat with pollack in the technology of minced meat semi-finished products with due observance of the parameters of production cycle of heat treatment of products. It has been theoretically substantiated and experimentally confirmed the technology of meat products using minced meat and developed recipes. It has been established that with careful selection of components that are part of minced meat semi-finished products with the addition of fish raw materials can increase the organoleptic and functional and technological parameters of finished products. The obtained data suggest that the improved recipes of minced meat semi-finished products can be recommended for production by enterprises of the meat industry and restaurants


2020 ◽  
Vol 24 (10) ◽  
pp. 13-19
Author(s):  
Ya.I. Vaisman ◽  
I.S. Glushankova ◽  
L.V. Rudakova ◽  
A.A. Surkov ◽  
A.S. Atanova

The results of studies on the thermal processing of synthetic multi-tonnage polymeric waste (polypropylene, polycarbonate, textolite, PET, organoplastics and tire rubber) with the production of carbon sorbents for technological and environmental purposes are presented. The influence of the nature of the activating agent and the conditions of the process with the production of sorbents with predetermined properties was studied. Analysis of the research results allowed us to establish that the main factors affecting the yield of carbonizate and the formation of a porous structure of carbon sorbents from synthetic polymer waste are the degree of aromaticity and the location of benzene rings in the polymer structure, the proportion of oxygen in the precursor. The criteria for selecting synthetic polymer wastes as raw materials for obtaining carbon sorbents with predetermined properties are established. The results of the research can be used in the development of technologies for obtaining carbon sorbents with predetermined properties from waste synthetic polymers and the selection of technological parameters for processes.


2012 ◽  
Vol 560-561 ◽  
pp. 249-253 ◽  
Author(s):  
Blaž Skubic ◽  
Mitja Lakner ◽  
Igor Plazl

A new lightweight thermal insulation board, containing expanded perlite and inorganic silicate binder with corresponding industrial production procedure was developed. The industrial technology was developed in cooperation between company Trimo d.d. and Faculty of chemistry and chemical technology Ljubljana and among others includes mixing of raw materials, molding, microwave drying and high temperature treatment of the dried board. A new product has low density (130 – 160 kg/m3), good mechanical properties and durability and can be used in various fields where inorganic thermal insulation is required. The current work presents the experimental study of the final process during plate production – high temperature treatment with sintering. During thermal treatment of the board, certain shrinkage is required to obtain sufficient mechanical properties and durability. Controlling the process of high temperature thermal treatment is the key to achieve the right balance between low final density of the board and its good mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document